scholarly journals Variability of some soil properties along a toposequence in a basaltic parent material of Vom, Plateau State Nigeria

2020 ◽  
pp. 77-81

Topography influences the distribution of some soil physical and chemical properties. This study assessed some variation in soil properties resulting from the topographic effect on Basaltic parent material at Vom Jos Plateau State in the Southern Guinea zone of Nigeria. Soil samples were collected at an interval of 20m and at depths of 0 to15cm and 15 to 30cm, parceled, labeled and taken to the laboratory for analysis of the selected for analysis. The results from the study revealed that variations in soil properties along the landscape segments were probably due to their positions toposequence characteristics in soils. Clay, silt and gravel contents varied moderately (CV = 22.9, 15.42 and 32.55% respectively), while sand did not vary much (CV = 8.47%). Organic carbon showed high variability (CV = 38.08%) while soil pH in (H2O and CaCl2) showed less spatial variability (with CV = 4.91 and 6.45% respectively). Available phosphorus has high variability (CV = 37.59%). Magnesium, K and Ca showed high spatial variability (CV = 42.60, 35.85, and 35.84% respectively), while Na and exchange acidity were moderately variable (CV = 24.39 and 24.27% respectively). Generally, some of the soil chemical properties were varied with topographic positions.

Author(s):  
Vítězslav Vlček ◽  
Miroslav Pohanka

Soil samples (n = 11) were collected in the chernozem areas of the Czech Republic (the Central Europe) from the topsoil and used as representative samples. All sampling areas have been used for agricultural purposes (arable soil) and they were selected as typical representatives of agricultural soil. These samples represented the soil with same genesis (to reduction differencies between soil types) but with different soil properties (physical and chemical). Complete chemical and physical analyses were made for confirmation of copper adsorption on solid phase: we analysed the particle size distribution, content of oxidizable carbon (Cox), the cation exchange capacity (CEC), supply of exchange calcium, magnesium, sodium, phosphorus and potassium, soil reaction and the total supply of Fe, Al, Mn, Ca, Mg, K, P and N. The strongest simple correlation between analysed soil properties and copper concentration had content of available magnesium (r = 0.44) and available phosphorus (r = −0.51). In the case of multiple correlations (i. e. collective influence of multiple soil properties) had the strongest influence combination of clay, soil reaction, total content of phosphorus, available magnesium and available phosphorus. The main influence of phosphorus and magnesium is evident. We suppose that copper and phosphorus enter into specific complex. Influence of these five soil properties can explain 92.7 % (r = 0.927) changes in the content of copper changes in the experiment.


Soil Research ◽  
2012 ◽  
Vol 50 (7) ◽  
pp. 579 ◽  
Author(s):  
T. Nkheloane ◽  
A. O. Olaleye ◽  
R. Mating

Wetlands are complex ecosystems, often exhibiting considerable spatial variability, making the understanding of soil spatial relationships within them difficult. A study was conducted to evaluate spatial variability of soil physico-chemical properties in two contrasting wetlands in two agro-ecological zones (AEZs) of Lesotho. Soil samples were collected along two transects in mini-pits dug at different depths at 50-m intervals. The collected samples were analysed for particle size, pH, soil organic carbon (SOC), SOC pool, available phosphorus (Av-P), cation exchange capacity (CEC), and base cations. Results showed that within-site variability was very low for sand particles and pH (coefficient of variation <15% for both properties). Soil physical properties generally showed less spatial heterogeneity than chemical properties, which differed widely within and between the study sites. There was generally low correlation between soil properties, and SOC accounted for most of the variation observed at both sites, especially T’sakholo with partial R2 = 94%; at Thaba-Putsoa, partial R2 = 44%. Geostatistical analysis showed that all of the nugget to sill ratios (NSR) showed strong spatial dependence (i.e. NSR of 54–94%) except SOC (T’sakholo stream-bank) with no spatial dependence, with the nugget accounting for 23.43%. We therefore conclude that further wetland studies in Lesotho should attempt to quantify not only the soil properties or processes under investigation but also their spatial variability, because this spatial variability can provide insight into underlying ecosystem processes and may itself indicate wetland condition. In addition, results of stepwise multiple regression showed that SOC and texture could be used across these sites for the sustainable management of these wetlands.


2019 ◽  
Vol 54 (1) ◽  
pp. 55-66
Author(s):  
MZ Khan ◽  
MA Islam ◽  
M Sadiqul Amin ◽  
MMR Bhuiyan

A study was conducted to explore the spatial variability of major soil nutrients of Agricultural fields in South-western region of Bangladesh. From the study area, 40 surface soil samples were collected by a random sampling strategy using GPS. Then soil physico-chemical properties i.e., pH, electrical conductivity (EC), organic matter (OM), total nitrogen (TN) N, soil available nutrients (P, K and S) were measured in laboratory. After data normalization, classical and geo-statistical analyses were used to describe soil properties and spatial correlation of soil characteristics. Spatial variability of soil physico-chemical properties was quantified through semi-variogram analysis and the respective surface maps were prepared through ordinary Kriging. Spherical model fits well with experimental semi-variogram of pH, EC, OM, TN, available P, K and S. Soil pH, available phosphorus (Av P), potassium (Av K) and sulfur (Av S) have the moderate spatial dependence, with nugget/sill ratios of 41.13% to 72.21%. The others have the strong dependence with nugget/sill ratios of less than 25%. The spatial variability of estimating soil properties varies within range of 0.0142 for Av P to 0.0383 for Av S and this model can calculate the un-sampled within neighboring distance of about 12.65 m for Av S to 150.82 m for TN, respectively. Cross validation of kriged map shows that spatial prediction of soil nutrients using semi-variogram parameters is better than assuming mean of observed value for any un-sampled location. Therefore, it is a suitable alternative method for accurate estimation of chemical properties of soil in un-sampled positions as compared to direct measurement which has time and costs concerned. Bangladesh J. Sci. Ind. Res.54(1), 55-66, 2019


2020 ◽  
Vol 71 (1) ◽  
pp. 192-200
Author(s):  
Anca-Luiza Stanila ◽  
Catalin Cristian Simota ◽  
Mihail Dumitru

Highlighting the sandy soil of Oltenia Plain calls for a better knowledge of their variability their correlation with major natural factors from each physical geography. Pedogenetic processes specific sandy soils are strongly influenced by nature parent material. This leads, on the one hand, climate aridity of the soil due to strong heating and accumulation of small water reserves, consequences emphasizing the moisture deficit in the development of the vegetation and favoring weak deflation, and on the other hand, an increase in mineralization organic matter. Relief under wind characteristic sandy land, soil formation and distribution has some particularly of flat land with the land formed on the loess. The dune ridges are less evolved soils, profile underdeveloped and poorly supplied with nutrients compared to those on the slopes of the dunes and the interdune, whose physical and chemical properties are more favorable to plant growth.Both Romanati Plain and the Blahnita (Mehedinti) Plain and Bailesti Plain, sand wind shaped covering a finer material, loamy sand and even loess (containing up to 26% clay), also rippled with negative effects in terms of overall drainage. Depending on the pedogenetic physical and geographical factors that have contributed to soil cover, in the researched were identified following classes of soils: protisols, cernisols, cambisols, luvisols, hidrisols and antrosols.Obtaining appropriate agricultural production requires some land improvement works (especially fitting for irrigation) and agropedoameliorative works. Particular attention should be paid to preventing and combating wind erosion.


2013 ◽  
Vol 37 (5) ◽  
pp. 1128-1135 ◽  
Author(s):  
Gener Tadeu Pereira ◽  
Zigomar Menezes de Souza ◽  
Daniel De Bortoli Teixeira ◽  
Rafael Montanari ◽  
José Marques Júnior

The sampling scheme is essential in the investigation of the spatial variability of soil properties in Soil Science studies. The high costs of sampling schemes optimized with additional sampling points for each physical and chemical soil property, prevent their use in precision agriculture. The purpose of this study was to obtain an optimal sampling scheme for physical and chemical property sets and investigate its effect on the quality of soil sampling. Soil was sampled on a 42-ha area, with 206 geo-referenced points arranged in a regular grid spaced 50 m from each other, in a depth range of 0.00-0.20 m. In order to obtain an optimal sampling scheme for every physical and chemical property, a sample grid, a medium-scale variogram and the extended Spatial Simulated Annealing (SSA) method were used to minimize kriging variance. The optimization procedure was validated by constructing maps of relative improvement comparing the sample configuration before and after the process. A greater concentration of recommended points in specific areas (NW-SE direction) was observed, which also reflects a greater estimate variance at these locations. The addition of optimal samples, for specific regions, increased the accuracy up to 2 % for chemical and 1 % for physical properties. The use of a sample grid and medium-scale variogram, as previous information for the conception of additional sampling schemes, was very promising to determine the locations of these additional points for all physical and chemical soil properties, enhancing the accuracy of kriging estimates of the physical-chemical properties.


2019 ◽  
Vol 35 (4) ◽  
Author(s):  
Willian Barros Nascimento ◽  
Milton César Costa Campos ◽  
Bruno Campos Mantovanelli ◽  
Luís Antônio Coutrim dos Santos ◽  
José Mauricio Cunha ◽  
...  

The Amazon region has a great diversity of landscapes such as forests galleries, natural fields (“Cerrados Amazônicos”), dense forest, these environments made possible the formation of a broad class of soils over time. The aim of this study was to evaluate the physical and chemical properties of soils in different physiographic environments in southern Amazonas, Brazil. Three areas of representative physiographies were selected, all of them in natural conditions: natural field / forest and floodplain / dry land transitions, and corrugated relief areas. Soil samples were collected in layers of 0.0 to 0.20 and 0.80-1.0 m. From the samples collected the following physical analyzes were performed: particle size, bulk density, particle density, total porosity and saturated hydraulic conductivity; and chemical: exchangeable calcium, magnesium, aluminum and potassium available, phosphorus, potential acidity, pH and organic carbon. Based on the results of chemical analysis were calculated the sum of bases and base saturation. The results were submitted to multivariate statistics analysis, at the discretion of the principal component analysis (PCA). From the results it is clear that different physiographic environments studied influence the formation of different soil classes, featuring the diversity of Amazonian soils. The PCA allowed the distinction and formation of different similarity groups, thus enabling to relate the physical and chemical properties with the physiographic formation in which they are inserted.


Author(s):  
Gintaras JARAŠIŪNAS ◽  
Irena KINDERIENĖ

The objective of this study was to evaluate the impact of different land use systems on soil erosion rates, surface evolution processes and physico-chemical properties on a moraine hilly topography in Lithuania. The soil of the experimental site is Bathihypogleyi – Eutric Albeluvisols (abe–gld–w) whose texture is a sandy loam. After a 27-year use of different land conservation systems, three critical slope segments (slightly eroded, active erosion and accumulation) were formed. Soil physical properties of the soil texture and particle sizes distribution were examined. Chemical properties analysed for were soil ph, available phosphorus (P) and potassium (K), soil organic carbon (SOC) and total nitrogen (N). We estimated the variation in thickness of the soil Ap horizon and soil physico-chemical properties prone to a sustained erosion process. During the study period (2010–2012) water erosion occurred under the grain– grass and grass–grain crop rotations, at rates of 1.38 and 0.11 m3 ha–1 yr–1, respectively. Soil exhumed due to erosion from elevated positions accumulated in the slope bottom. As a result, topographic transfiguration of hills and changes in soil properties occurred. However, the accumulation segments of slopes had significantly higher silt/clay ratios and SOC content. In the active erosion segments a lighter soil texture and lower soil ph were recorded. Only long-term grassland completely stopped soil erosion effects; therefore geomorphologic change and degradation of hills was estimated there as minimal.


Author(s):  
Railton O. dos Santos ◽  
◽  
Laís B. Franco ◽  
Samuel A. Silva ◽  
George A. Sodré ◽  
...  

ABSTRACT The knowledge on the spatial variability of soil properties and crops is important for decision-making on agricultural management. The objective of this study was to evaluate the spatial variability of soil fertility and its relation with cocoa yield. The study was conducted over 14 months in an area cultivated with cocoa. A sampling grid was created to study soil chemical properties and cocoa yield (stratified in season, off-season and annual). The data were analyzed using descriptive and exploratory statistics, and geostatistics. The chemical attributes were classified using fuzzy logic to generate a soil fertility map, which was correlated with maps of crop yield. The soil of the area, except for the western region, showed possibilities ranging from medium to high for cocoa cultivation. Soil fertility showed positive spatial correlation with cocoa yield, and its effect was predominant only for the off-season and annual cocoa.


Sign in / Sign up

Export Citation Format

Share Document