scholarly journals Analysis of rubella disease model with non-local and non-singular fractional derivatives

Author(s):  
Ilknur Koca

In this paper we investigate a possible applicability of the newly established fractional differentiation in the field of epidemiology. To do this we extend the model describing the Rubella spread by replacing the time derivative with the time fractional derivative for the inclusion of memory. Detailed analysis of existence and uniqueness of exact solution is presented using the Banach fixed point theorem. Finally some numerical simulations are showed to underpin the effectiveness of the used derivative.

2018 ◽  
Vol 11 (08) ◽  
pp. 1850100 ◽  
Author(s):  
Sonal Jain ◽  
Abdon Atangana

In this paper, we investigate a possible applicability of the newly established fractional differentiation in the field of epidemiology. To do this, we extend the model describing the Lassa hemorrhagic fever by changing the derivative with the time fractional derivative for the inclusion of memory. Detailed analysis of existence and uniqueness of exact solution is presented using the Banach fixed point theorem. Finally, some numerical simulations are shown to underpin the effectiveness of the used derivative.


2013 ◽  
Vol 2013 ◽  
pp. 1-8 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu ◽  
Ravi P. Agarwal

We prove the existence and uniqueness of solutions for two classes of infinite delay nonlinear fractional order differential equations involving Riemann-Liouville fractional derivatives. The analysis is based on the alternative of the Leray-Schauder fixed-point theorem, the Banach fixed-point theorem, and the Arzela-Ascoli theorem inΩ={y:(−∞,b]→ℝ:y|(−∞,0]∈ℬ}such thaty|[0,b]is continuous andℬis a phase space.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Ramazan Yazgan ◽  
Osman Tunç

AbstractThis study is about getting some conditions that guarantee the existence and uniqueness of the weighted pseudo almost periodic (WPAP) solutions of a Lasota–Wazewska model with time-varying delays. Some adequate conditions have been obtained for the existence and uniqueness of the WPAP solutions of the Lasota–Wazewska model, which we dealt with using some differential inequalities, the WPAP theory, and the Banach fixed point theorem. Besides, an application is given to demonstrate the accuracy of the conditions of our main results.


2021 ◽  
Vol 2 (3) ◽  
pp. 9-20
Author(s):  
VARSHINI S ◽  
BANUPRIYA K ◽  
RAMKUMAR K ◽  
RAVIKUMAR K

The paper is concerned with stochastic random impulsive integro-differential equations with non-local conditions. The sufficient conditions guarantees uniqueness of mild solution derived using Banach fixed point theorem. Stability of the solution is derived by incorporating Banach fixed point theorem with certain inequality techniques.


2013 ◽  
Vol 2013 ◽  
pp. 1-11
Author(s):  
Tianlong Shen ◽  
Jianhua Huang ◽  
Jin Li

The current paper is devoted to the regularity of the mild solution for a stochastic fractional delayed reaction-diffusion equation driven by Lévy space-time white noise. By the Banach fixed point theorem, the existence and uniqueness of the mild solution are proved in the proper working function space which is affected by the delays. Furthermore, the time regularity and space regularity of the mild solution are established respectively. The main results show that both time regularity and space regularity of the mild solution depend on the regularity of initial value and the order of fractional operator. In particular, the time regularity is affected by the regularity of initial value with delays.


2011 ◽  
Vol 467-469 ◽  
pp. 1078-1083
Author(s):  
Dian Chen Lu ◽  
Ruo Yu Zhu

The well-posed problem for the fully nonlinear Aceive diffusion and dispersion equation on the domain [0, 1] is investigated by using boundary control. The existence and uniqueness of the solutions with the help of the Banach fixed point theorem and the theory of operator semigroups are verified. By using some inequalities and integration by parts, the exponential stability of the fully nonlinear Aceive diffusion and dispersion equation with the designed boundary feedback is also proved.


2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
N. I. Mahmudov ◽  
S. Unul

Existence and uniqueness of solutions forα∈(2,3]order fractional differential equations with three-point fractional boundary and integral conditions involving the nonlinearity depending on the fractional derivatives of the unknown function are discussed. The results are obtained by using fixed point theorems. Two examples are given to illustrate the results.


2019 ◽  
Vol 20 (3) ◽  
pp. 403
Author(s):  
Suzete M Afonso ◽  
Juarez S Azevedo ◽  
Mariana P. G. Da Silva ◽  
Adson M Rocha

In this work we consider the general functional-integral equation: \begin{equation*}y(t) = f\left(t, \int_{a}^{b} k(t,s)g(s,y(s))ds\right), \qquad t\in [a,b],\end{equation*}and give conditions that guarantee existence and uniqueness of solution in $L^p([a,b])$, with {$1<p<\infty$}.We use  Banach Fixed Point Theorem and employ the successive approximation method and Chebyshev quadrature for approximating the values of integrals. Finally, to illustrate the results of this work, we provide some numerical examples.


Author(s):  
Zeinab Eivazi Damirchi Darsi Olia ◽  
Madjid Eshaghi Gordji ◽  
Davood Ebrahimi Bagha

In this paper, we introduce new concept of orthogonal cone metric spaces. We stablish new versions of fixed point theorems in incomplete orthogonal cone metric spaces. As an application, we show the existence and uniqueness of solution of the periodic boundry value problem.


2011 ◽  
Vol 2011 ◽  
pp. 1-14 ◽  
Author(s):  
Azizollah Babakhani ◽  
Dumitru Baleanu

We established the existence of a positive solution of nonlinear fractional differential equationsL(D)[x(t)−x(0)]=f(t,xt),t∈(0,b]with finite delayx(t)=ω(t),t∈[−τ,0], wherelimt→0f(t,xt)=+∞, that is,fis singular att=0andxt∈C([−τ,0],ℝ≥0). The operator ofL(D)involves the Riemann-Liouville fractional derivatives. In this problem, the initial conditions with fractional order and some relations among them were considered. The analysis rely on the alternative of the Leray-Schauder fixed point theorem, the Banach fixed point theorem, and the Arzela-Ascoli theorem in a cone.


Sign in / Sign up

Export Citation Format

Share Document