scholarly journals The incretin hormone glucagon‐like peptide 1 increases mitral cell excitability by decreasing conductance of a voltage‐dependent potassium channel

2016 ◽  
Vol 594 (10) ◽  
pp. 2607-2628 ◽  
Author(s):  
Nicolas Thiebaud ◽  
Ida J. Llewellyn‐Smith ◽  
Fiona Gribble ◽  
Frank Reimann ◽  
Stefan Trapp ◽  
...  
2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Matthias Ploug Larsen ◽  
Signe Sørensen Torekov

Background. The incretin effect is impaired in patients with type 2 diabetes. Aim. To assess the relation between the incretin hormone GLP-1 and the prediabetic subtypes: impaired fasting glucose (IFG), impaired glucose tolerance (IGT), and the combined IFG/IGT to investigate whether a low GLP-1 response may be a predictor of prediabetes in adults. Method. 298 articles were found using a broad search phrase on the PubMed database and after the assessment of titles and abstracts 19 articles were included. Results and Discussion. Studies assessing i-IFG/IFG and i-IGT/IGT found both increased, unaltered, and reduced GLP-1 levels. Studies assessing IFG/IGT found unaltered or reduced GLP-1 levels. When assessing the five studies with the largest sample size, it clearly suggests a decreased GLP-1 response in IFG/IGT subjects. Several other factors (BMI, glucagon, age, and nonesterified fatty acids (NEFA)), including medications (metformin), may also influence the secretion of GLP-1. Conclusion. This review suggests that the GLP-1 response is a variable in prediabetes possibly due to a varying GLP-1-secreting profile during the development and progression of type 2 diabetes or difference in the measurement technique. Longitudinal prospective studies are needed to assess whether a reduced GLP-1 response is a predictor of diabetes.


Circulation ◽  
2014 ◽  
Vol 130 (suppl_2) ◽  
Author(s):  
Morihiko Aoyama ◽  
Yasuko K Bando ◽  
Haruya Kawase ◽  
Akio Monji ◽  
Toko Mitsui ◽  
...  

Introduction: Ample evidence demonstrates cardiovascular protection by incretin hormone glucagon-like peptide-1 (GLP-1) through the cyclic AMP axis. GLP-1 is known for its inotropic effect on heart, however, the role of GLP-1 in heart failure remains uncertain. Hypothesis: To explore the pathophysiological role of GLP-1 in heart failure Methods: Pressure overload-induced heart failure model was generated by transverse aortic constriction in mice (TAC). Results: At 4 week after the operation, TAC exhibited systolic left-ventricular dysfunction, myocardial hypertrophy and augmented apoptosis. Unexpectedly, circulating GLP-1 concentration was markedly decreased in TAC (in pM; 0.86±0.10 for TAC versus 2.13±0.54 for sham) with concomitant reduction of myocardial cyclic AMP concentration (in pmole/mg protein; 33.0±1.4 for TAC versus 42.2±1.5). TAC exhibited pathological changes in signaling molecules of myocardial contractility [SERCA, phospho-phospholamban(Serine16; pPL), β-myosin heavy chain (MYH7)], remodeling (Akt/mTOR/S6K), and cell death markers (procaspase-3/Bcl2 for apoptosis and PINK/PARKIN complex for mitophagy detecting damaged mitochondria). All of these changes observed in TAC heart were reversed selectively by treatment with GLP-1 analog exendin-4 (Ex4; 24nmole/kg/day for 4 weeks) and indirect supplement of GLP-1 by a DPP4 inhibitor alogliptin (ALO; 10mg/kg/day for 4 weeks). In vitro TUNEL assay using cultured cardiomyocytes revealed that Ex-4 reduced myocardial apoptosis in a cAMP/EPAC1-dependent but PKA-independent manner (Figure). Conclusions: Pressure-overloaded heart failure exhibits decline in GLP-1, leading to cAMP/EPAC1-dependent impairment in myocardial apoptosis, and cAMP/PKA/pPL/SERCA-dependent myocardial contractile dysfunction. Our data suggest the distinct role of PKA and EPAC in pathophysiology underlying heart failure.


2011 ◽  
Vol 2011 ◽  
pp. 1-10 ◽  
Author(s):  
Chinmay S. Marathe ◽  
Christopher K. Rayner ◽  
Karen L. Jones ◽  
Michael Horowitz

Glucagon-like peptide 1 (GLP-1) is a hormone secreted predominantly by the distal small intestine and colon and released in response to enteral nutrient exposure. GLP-1-based therapies are now used widely in the management of type 2 diabetes and have the potential to be effective antiobesity agents. Although widely known as an incretin hormone, there is a growing body of evidence that GLP-1 also acts as an enterogastrone, with profound effects on the gastrointestinal motor system. Moreover, the effects of GLP-1 on gastrointestinal motility appear to be pivotal to its effect of reducing postprandial glycaemic excursions and may, potentially, represent the dominant mechanism. This review summarizes current knowledge of the enterogastrone properties of GLP-1, focusing on its effects on gut motility at physiological and pharmacological concentrations, and the motor actions of incretin-based therapies. While of potential importance, the inhibitory action of GLP-1 on gastric acid secretion is beyond the scope of this paper.


1995 ◽  
Vol 147 (1) ◽  
pp. 25-31 ◽  
Author(s):  
C Herrmann-Rinke ◽  
A Vöge ◽  
M Hess ◽  
B Göke

Abstract Food ingestion induces a rapid increase in the insulinotropic glucagon-like peptide-1 (GLP-1) in plasma. Paradoxically, GLP-1 originates from the lower intestines and therefore a complex regulation of postprandial GLP-1 secretion must exist. This was addressed in the present study by utilizing an isolated vascularly perfused rat ileum preparation. Peptides and neurotransmitters thought to be candidate mediators triggering GLP-1 secretion were arterially infused and GLP-1 was measured in the venous effluent. Arterial infusion of cholinergic agonists strongly enhanced GLP-1 secretion which was counteracted by the addition of atropine. Histamine, dopamine, 5-hydoxytryptamine, γ-aminobutyric acid, and norepinephrine had no effect. Peptides of the bombesin family were strong stimulants whereas tachykinins, enkephalins, dynorphin, TRH, calcitonin-gene-related peptide and members of the secretin family, vasoactive intestinal peptide, peptide histidine isoleucine and neuropeptide Y, were less effective. The second incretin hormone, gastric inhibitory polypeptide (GIP), was the most potent stimulant of GLP-1 secretion in our study. It enhanced GLP-1 release up to sixfold above basal during the early phase followed by a sustained secretion at 400% above basal. This stimulation remained unaffected by atropine. In conclusion, in addition to luminal stimulation of nutrients, a cholinergic impulse as well as peptidergic mediators (among them possibly GIP and GRP) may have an impact on postprandial GLP-1 secretion from the rat ileum. Journal of Endocrinology (1995) 147, 25–31


Diabetes ◽  
1998 ◽  
Vol 47 (7) ◽  
pp. 1038-1045 ◽  
Author(s):  
M. Cordier-Bussat ◽  
C. Bernard ◽  
F. Levenez ◽  
N. Klages ◽  
B. Laser-Ritz ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document