scholarly journals Study Of Genetic Diversity And Resistance Of Fruit Crops To Main Pathogens Using DNA Markers

Author(s):  
A. Abdullaev ◽  
A. Abdurakhimov ◽  
M. Rejapova

Breeding modern varieties of fruit crops requires the study of their biodiversity as a source of genes for useful traits, with the aim of transferring them to genome of commercial varieties. Application of genomic technologies can significantly speed up the breeding process. Identification and application of DNA markers for the study of genetic diversity, varietal identification, as well as the transfer of genes of valuable economic traits through marker assisted selection programs is of great applied importance. The article discusses the results of studies to identify genes and DNA markers associated with resistance of some fruit crops to major diseases.

2014 ◽  
Vol 2014 ◽  
pp. 1-15 ◽  
Author(s):  
Waqas Malik ◽  
Javaria Ashraf ◽  
Muhammad Zaffar Iqbal ◽  
Asif Ali Khan ◽  
Abdul Qayyum ◽  
...  

Narrow genetic base and complex allotetraploid genome of cotton (Gossypium hirsutumL.) is stimulating efforts to avail required polymorphism for marker based breeding. The availability of draft genome sequence ofG. raimondiiandG. arboreumand next generation sequencing (NGS) technologies facilitated the development of high-throughput marker technologies in cotton. The concepts of genetic diversity, QTL mapping, and marker assisted selection (MAS) are evolving into more efficient concepts of linkage disequilibrium, association mapping, and genomic selection, respectively. The objective of the current review is to analyze the pace of evolution in the molecular marker technologies in cotton during the last ten years into the following four areas: (i) comparative analysis of low- and high-throughput marker technologies available in cotton, (ii) genetic diversity in the available wild and improved gene pools of cotton, (iii) identification of the genomic regions within cotton genome underlying economic traits, and (iv) marker based selection methodologies. Moreover, the applications of marker technologies to enhance the breeding efficiency in cotton are also summarized. Aforementioned genomic technologies and the integration of several other omics resources are expected to enhance the cotton productivity and meet the global fiber quantity and quality demands.


2021 ◽  
Vol 12 ◽  
Author(s):  
Fakhriddin N. Kushanov ◽  
Ozod S. Turaev ◽  
Dilrabo K. Ernazarova ◽  
Bunyod M. Gapparov ◽  
Barno B. Oripova ◽  
...  

Cotton genetic resources contain diverse economically important traits that can be used widely in breeding approaches to create of high-yielding elite cultivars with superior fiber quality and adapted to biotic and abiotic stresses. Nevertheless, the creation of new cultivars using conventional breeding methods is limited by the cost and proved to be time consuming process, also requires a space to make field observations and measurements. Decoding genomes of cotton species greatly facilitated generating large-scale high-throughput DNA markers and identification of QTLs that allows confirmation of candidate genes, and use them in marker-assisted selection (MAS)-based breeding programs. With the advances of quantitative trait loci (QTL) mapping and genome-wide-association study approaches, DNA markers associated with valuable traits significantly accelerate breeding processes by replacing the selection with a phenotype to the selection at the DNA or gene level. In this review, we discuss the evolution and genetic diversity of cotton Gossypium genus, molecular markers and their types, genetic mapping and QTL analysis, application, and perspectives of MAS-based approaches in cotton breeding.


2020 ◽  
Vol 25 ◽  
pp. 03001
Author(s):  
Ivan Suprun ◽  
Sergei Tokmakov ◽  
Elena Lobodina

This article describes development of multilocus SSR-markers sets for genotyping Pyrus, Prunus, and Malus from various genetic collections of the South of Russia. Generated multiplex sets of SSR-markers were used in the certification of cultivated varieties and in the analysis of the genetic structure of Pyrus, Prunus and Malus species collections. The results of SSR genotyping of pear, apple, plum and sweet cherry made it possible to establish genetic relationships between varieties, including groups of modern varieties of Russian and foreign breeding and, in turn, local autochthonous varieties. In general, the use of these multiplexes has confirmed their effectiveness in solving the assigned tasks.


2018 ◽  
Vol 51 ◽  
pp. 185-192
Author(s):  
S. Kruhlyk ◽  
V. Dzitsiuk ◽  
V. Spyrydonov

Genetic variability of domestic dogs is a source for effective process of breed formation and creating unique gene complexes. In the world, for preservation of genetic resources of dogs, there are dog training associations which have great confidence: American Club Dog Breeders (AKC), the British Kennel Club (KC) and the Federation Cynologique Internationale (FCI), aimed at protecting breeding dogs, standards creation, registration of a breed, and issuance of accurate pedigrees. Evaluation of the genetic diversity of dog breeds is able to significantly complement and improve their breeding programs. Since breeds of dog differ in morphological and economic characteristics, the problem of finding of the breed features in the genome of animals is becoming more topical. From this point of view, French Bulldog is an interesting breed of dog (FRANC.BULLDOGGE, FCI standard number 101) which belongs by the classification of breeds, adopted in FCI, to the group IX – a dog-companion for health and fun, but to a subgroup of fighting dogs of a small format. French Bulldog breed has been researched slightly not only in Ukraine and also abroad, as the main work of all dog association is focused on solving theoretical and practical issues of breeding, keeping, feeding, veterinary protection and others. The study was conducted at Research Department of Molecular Diagnostic Tests of Ukrainian Laboratory of Quality and Safety of Agricultural Products. 33 animals of French Bulldog breed, admitted to use in dog breeding of Ukrainian Kennel Union (UKU), were involved for the genetic analysis using DNA markers. The materials of the research were buccal epithelial cells, selected before the morning feeding of animals by scraping mucous membrane of oral cavity with disposable, dry, sterile cotton swab. Genomic DNA was extracted using KIT-set of reagents for DNA isolation according to the manufacturer's instructions. PEZ1, PEZ3, PEZ6, PEZ8, FHC 2010, FHC 2054 markers, recommended by International Society for Animal Genetics (ISAG), ACN, КC and FCI, were used for research. As a result of research 25 alleles for all the loci were detected in the experimental sample of dogs. The average number of alleles at the locus Na, obtained by direct counting, was 4.16. The most polymorphic loci for this breed were PEZ6 and PEZ3 with 8 and 6 allelic variants. Monomorphic loci were PEZ8 and FHC 2054 which had 4 and 3 alleles and the lowest level of polymorphism was observed for PEZ 1 and FHC 2010 loci in which only 2 alleles were identified. On analyzing the molecular genetic characteristics of dogs of French Bulldog breed, we found a high variability of genotype on rare alleles, which included alleles: M, C, D, E, J, K, L, O, N and representing 60% of the total number of the identified alleles. C, D, E alleles for PEZ3 locus and O allele at PEZ6 locus are unique to the sampling of dogs because they are not repeated in other loci. Typical alleles: N, F, R, I, P, K, M are 40% of the total. But F, R alleles for PEZ3 locus and P allele for locus PEZ6 are not repeated either in standard allelic variants or in rare one, indicating a high information content of these alleles and loci to be used for further monitoring of allele pool, genetic certification and identification of dogs. Microsatellite DNA loci were analyzed as a result of investigations of French Bulldogs and the most informative: PEZ3, PEZ6 and PEZ8 were found, which have high efficiency in individual and breed certification of dogs due to high variability. These data allow further monitoring of the state of genetic diversity of the breed and the development of measures for improvement of breeding to preserve the structure of breeding material. The study of individual and population genetic variability is advisable to continue for breeding of French Bulldogs "in purity" and preserving valuable gene complexes. The results are the basis for further monitoring of the proposed informative panels of microsatellite DNA markers for genotyping dog of French Bulldog breed and their complex evaluation.


2008 ◽  
Vol 16 (2) ◽  
pp. 156
Author(s):  
Liao Xinjun ◽  
Chang Hong ◽  
Zhang Guixiang ◽  
Wang Donglei ◽  
Song Weitao ◽  
...  

2012 ◽  
Vol 44 (4) ◽  
pp. 588-596 ◽  
Author(s):  
Kang Hee Cho ◽  
◽  
Eun Young Nam ◽  
Kyung-Mi Bae ◽  
Il Sheob Shin ◽  
...  

2020 ◽  
Vol 24 (5) ◽  
pp. 474-480
Author(s):  
I. I. Suprun ◽  
S. A. Plugatar ◽  
I. V. Stepanov ◽  
T. S. Naumenko

In connection with the development of breeding and the creation of new plant varieties, the problem of their genotyping and identification is becoming increasingly important, therefore the use of molecular methods to identify genetic originality and assess plant genetic diversity appears to be relevant. As part of the work performed, informative ISSR and IRAP DNA markers promising for the study of genetic diversity of the Rosa L. genus were sought and applied to analysis of genetic relationships among 26 accessions of the genus Rosa L. from the gene pool collection of Nikita Botanical Gardens. They included 18 cultivated varieties and 8 accessions of wild species. The species sample included representatives of two subgenera, Rosa and Platyrhodon. The subgenus Platyrhodon was represented by one accession of the species R. roxburghii Tratt. Cultivated roses were represented by varieties of garden groups hybrid tea, floribunda, and grandiflora. The tested markers included 32 ISSRs and 13 IRAPs. Five ISSR markers (UBC 824, ASSR29, 3A21, UBC 864, and UBC 843) and three IRAPs (TDK 2R, Сass1, and Сass2) were chosen as the most promising. They were used for genotyping the studied sample of genotypes. In general, they appeared to be suitable for further use in studying the genetic diversity of the genus Rosa L. The numbers of polymorphic fragments ranged from 12 to 31, averaging 19.25 fragments per marker. For markers UBC 864 and UBC 843, unique fingerprints were identified in each accession studied. The genetic relationships of the studied species and varieties of roses analyzed by the UPGMA, PCoA, and Bayesian methods performed on the basis of IRAP and ISSR genotyping are consistent with their taxonomic positions. The genotype of the species R. roxburghii of the subgenus Platyrhodon was determined genetically as the most distant. According to clustering methods, the representative of the species R. bengalensis did not stand out from the group of cultivated varieties. When assessing the level of genetic similarity among the cultivated varieties of garden roses, the most genetically isolated varieties were ‘Flamingo’, ‘Queen Elizabeth’, and ‘Kordes Sondermeldung’; for most of the other varieties, groups of the greatest genetic similarity were identified. This assessment reflects general trends in phylogenetic relationships, both among the studied species of the genus and among cultivated varieties.


2020 ◽  
Author(s):  
Yusen Shen ◽  
Jiansheng Wang ◽  
Huifang Yu ◽  
Xiaoguang Sheng ◽  
Zhenqing Zhao ◽  
...  

Abstract Background: Broccoli (Brassica oleracea var. italica) is a vegetable widely cultivated in China. Many new-type broccoli cultivars were bred and developed by Chinese breeders during the recent three decades. However, the broccoli cultivar nomenclature and detailed information of genetic relationships among broccoli germplasms are unclear. Results: The present study identified millions of SNPs by next-generation sequencing of 23 representative broccoli lines. Through several steps of selection, 100 SNPs were successfully converted into KASP markers, and used to evaluate the genetic diversity, genetic relationship, and population structure of 392 broccoli accessions, which represent the mainly broccoli breeding materials in China. The initial, introduced and improved accessions were well clustered, though some accessions were overlapped between groups, probably reflecting the fact that breeding activities led to genetic similarities. To make the KASP genotyping more efficient and cost-effective, 25 of the 100 KASPs were selected for fingerprinting of all accessions, and the 2D barcode contained fingerprinting information were generated for elite varieties. Conclusion: The KASP markers developed in this study provided an efficient way for germplasm characterization, DNA fingerprinting, seed purity identification, and marker-assisted selection of broccoli in China.


Sign in / Sign up

Export Citation Format

Share Document