scholarly journals Optimization of Machining Parameters for Product Quality and Productivity in Turning Process of Aluminum

2021 ◽  
Vol 26 ◽  
Author(s):  
Sepideh Abolghasem ◽  
Nicolás Mancilla-Cubides

Modern production process is accompanied with new challenges in reducing the environmental impacts related to machining processes. The turning process is a manufacturing process widely used with numerous applications for creating engineering components. Accordingly, many studies have been conducted in order to optimize the machining parameters and facilitate the decision-making process. This work aims to optimize the quality of the machined products (surface finish) and the productivity rate of the turning manufacturing process. To do so, we use Aluminum as the material test to perform the turning process with cutting speed, feed rate, depth of cut, and nose radius of the cutting tool as our design factors. Product quality is quantified using surface roughness (R_a) and the productivity rate based on material removal rate (MRR). We develop a predictive and optimization model by coupling Artificial Neural Networks (ANN) and the Particle Swarm Optimization (PSO) multi-function optimization technique, as an alternative to predict the model response (R_a) first and then search for the optimal value of turning parameters to minimize the surface roughness (R_a) and maximize the material removal rate (MRR). The results obtained by the proposed models indicate good match between the predicted and experimental values proving that the proposed ANN model is capable to predict the surface roughness accurately. The optimization model PSO has provided a Pareto Front for the optimal solution determining the best machining parameters for minimum R_a and maximum MRR. The results from this study offer application in the real industry where the selection of optimal machining parameters helps to manage two conflicting objectives, which eventually facilitate the decision-making process of machined products.

Materials ◽  
2019 ◽  
Vol 12 (1) ◽  
pp. 125 ◽  
Author(s):  
Lei Guo ◽  
Xinrong Zhang ◽  
Shibin Chen ◽  
Jizhuang Hui

Ultraviolet-curable resin was introduced as a bonding agent into the fabrication process of precision abrasive machining tools in this study, aiming to deliver a rapid, flexible, economical, and environment-friendly additive manufacturing process to replace the hot press and sintering process with thermal-curable resin. A laboratory manufacturing process was established to develop an ultraviolet-curable resin bond diamond lapping plate, the machining performance of which on the ceramic workpiece was examined through a series of comparative experiments with slurry-based iron plate lapping. The machined surface roughness and weight loss of the workpieces were periodically recorded to evaluate the surface finish quality and the material removal rate. The promising results in terms of a 12% improvement in surface roughness and 25% reduction in material removal rate were obtained from the ultraviolet-curable resin plate-involved lapping process. A summarized hypothesis was drawn to describe the dynamically-balanced state of the hybrid precision abrasive machining process integrated both the two-body and three-body abrasion mode.


2014 ◽  
Vol 592-594 ◽  
pp. 831-835 ◽  
Author(s):  
Vikram Singh ◽  
Sharad Kumar Pradhan

The objective of the present work is to investigate the effects of various WEDM process parameters like pulse on time, pulse off time, corner servo, flushing pressure, wire feed rate, wire tension, spark gap voltage and servo feed on the material removal rate (MRR) & Surface Roughness (SR) and to obtain the optimal settings of machining parameters at which the material removal rate (MRR) is maximum and the Surface Roughness (SR) is minimum in a range. In the present investigation, Inconel 825 specimen is machined by using brass wire as electrode and the response surface methodology (RSM) is for modeling a second-order response surface to estimate the optimum machining condition to produce the best possible response within the experimental constraints.


Electro discharge machining is a non-traditional machining process used for machining hard-to-machine materials, such as various grades of titanium alloys, heat-treated alloy steels, composites, tungsten carbides, and so forth. These materials are hard to machine with customary machining procedures like drilling, milling and hence electro-discharge machining is used to machine such materials to get better quality and efficiency. These materials are generally utilized in current industries like die making industries, aeronautics, nuclear industries, and medical fields. This type of machining is thermalbased, and machining takes place due to repetitive electric sparks that generate between workpiece and tool. Both tools and workpieces are inundated in a dielectric liquid, which has two primary functions. In the first place, it behaves like a medium between the work metal and the tool. Second, it is a flushing agent to expel the machined metal from the machined zone. Machining parameters like a pulse on time, current, wire feed the tool and gap voltage affect the output responses like surface roughness and material removal rate. The material removal rate is a significant parameter that determines machining efficiency. Surface roughness is also a vital parameter that decides machining quality. A lot of research has been conducted to determine the optimum parameters for obtaining the best results. In the present work, a comprehensive review of different types of EDM and the effect of various machining parameters on the surface roughness, material removal rate, and other response parameters has been done.


2021 ◽  
Vol 71 (2) ◽  
pp. 69-84
Author(s):  
Do Duc Trung

Abstract Low surface roughness and high Material Removal Rate (MRR) are expected in most machining methods in general and milling method in particular. However, they sometimes do not occur, for example, the MRR is often small as the surface roughness is low. In this case, the decisions made should ensure that desires are simultaneously satisfied. This situation leads to a problem known as multi-criteria decision making (MCDM). In this study, five methods including EDAS, MARCOS, PIV, MOORA and TOPSIS are used together for the decision-making in the milling process. The purpose of the research is to determine the value of cutting parameters for both the low surface roughness and large MRR. The comparison of these methods for finding the best is carefully discussed as well.


Sign in / Sign up

Export Citation Format

Share Document