scholarly journals Mathematical model for acquiring immunity to malaria: a PDE approach

BIOMATH ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 2107227
Author(s):  
S Y Tchoumi ◽  
Y T Kouakep ◽  
D J M Fotsa ◽  
F G T Kamba ◽  
J C Kamgang ◽  
...  

We develop a new model of integro-differential equations coupled with a partial differential equation that focuses on the study of the? naturally acquiring immunity to malaria induced by exposure to infection. We analyze a continuous acquisition of immunity after infected individuals are treated. It exhibits complex and realistic mechanisms precised mathematically in both disease free or endemic context and in several numerical simulations showing the interplay between infection through the bite of mosquitoes. The model confirms the (partial) premunition of the human population in the regions where malaria is endemic. As common in literature, we indicate an equivalence of the basic reproduction rate as the spectral radius of a next generation operator.

Author(s):  
G. Domokos ◽  
G. W. Gibbons

We propose a mathematical model which suggests that the two main geological observations about shingle beaches, i.e. the emergence of predominant pebble size ratios and strong segregation by size, are interrelated. Our model is based on a system of ordinary differential equations (ODEs) called the box equations that describe the evolution of pebble ratios. We derive these ODEs as a heuristic approximation of Bloore's partial differential equation (PDE) describing collisional abrasion and verify them by simple experiments and by direct simulation of the PDE. Although representing a radical simplification of the latter, our system admits the inclusion of additional terms related to frictional abrasion. We show that non-trivial attractors (corresponding to predominant pebble size ratios) only exist in the presence of friction. By interpreting our equations as a Markov process, we illustrate by direct simulation that these attractors may only be stabilized by the ongoing segregation process.


Symmetry ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1272
Author(s):  
Fengsheng Chien ◽  
Stanford Shateyi

This paper studies the global stability analysis of a mathematical model on Babesiosis transmission dynamics on bovines and ticks populations as proposed by Dang et al. First, the global stability analysis of disease-free equilibrium (DFE) is presented. Furthermore, using the properties of Volterra–Lyapunov matrices, we show that it is possible to prove the global stability of the endemic equilibrium. The property of symmetry in the structure of Volterra–Lyapunov matrices plays an important role in achieving this goal. Furthermore, numerical simulations are used to verify the result presented.


2014 ◽  
Vol 986-987 ◽  
pp. 1418-1421
Author(s):  
Jun Shan Li

In this paper, we propose a meshless method for solving the mathematical model concerning the leakage problem when the pressure is tested in the gas pipeline. The method of radial basis function (RBF) can be used for solving partial differential equation by writing the solution in the form of linear combination of radius basis functions, that is, when integrating the definite conditions, one can find the combination coefficients and then the numerical solution. The leak problem is a kind of inverse problem that is focused by many engineers or mathematical researchers. The strength of the leak can find easily by the additional conditions and the numerical solutions.


2006 ◽  
Vol Volume 5, Special Issue TAM... ◽  
Author(s):  
Mario Lefebvre

International audience A two-dimensional controlled stochastic process defined by a set of stochastic differential equations is considered. Contrary to the most frequent formulation, the control variables appear only in the infinitesimal variances of the process, rather than in the infinitesimal means. The differential game ends the first time the two controlled processes are equal or their difference is equal to a given constant. Explicit solutions to particular problems are obtained by making use of the method of similarity solutions to solve the appropriate partial differential equation. On considère un processus stochastique commandé bidimensionnel défini par un ensemble d'équations différentielles stochastiques. Contrairement à la formulation la plus fréquente, les variables de commande apparaissent dans les variances infinitésimales du processus, plutôt que dans les moyennes infinitésimales. Le jeu différentiel prend fin lorsque les deux processus sont égaux ou que leur différence est égale à une constante donnée. Des solutions explicites à des problèmes particuliers sont obtenues en utilisant la méthode des similitudes pour résoudre l'équation aux dérivées partielles appropriée.


Author(s):  
Michael Doebeli

This chapter discusses partial differential equation models. Partial differential equations can describe the dynamics of phenotype distributions of polymorphic populations, and they allow for a mathematically concise formulation from which some analytical insights can be obtained. It has been argued that because partial differential equations can describe polymorphic populations, results from such models are fundamentally different from those obtained using adaptive dynamics. In partial differential equation models, diversification manifests itself as pattern formation in phenotype distribution. More precisely, diversification occurs when phenotype distributions become multimodal, with the different modes corresponding to phenotypic clusters, or to species in sexual models. Such pattern formation occurs in partial differential equation models for competitive as well as for predator–prey interactions.


1927 ◽  
Vol 46 ◽  
pp. 126-135 ◽  
Author(s):  
E. T. Copson

A partial differential equation of physics may be defined as a linear second-order equation which is derivable from a Hamiltonian Principle by means of the methods of the Calculus of Variations. This principle states that the actual course of events in a physical problem is such that it gives to a certain integral a stationary value.


2020 ◽  
Vol 98 (7) ◽  
pp. 683-688
Author(s):  
Smail Bougouffa ◽  
Lazhar Bougoffa

In this paper, we illustrate the use of the method of the characteristics in various dissipative models of a single harmonic oscillator. The master equation governing the process can be transformed to a partial differential equation on the Wigner distribution, which in turn can be split to a system of coupled differential equations. We present a useful technique that can be used to separate the system without increasing the order and then the solutions can be obtained. The obtained solutions are used to calculate the average of energy observable of the system. This procedure can be extended to solve some other complex similar problems.


Sign in / Sign up

Export Citation Format

Share Document