Optimization of Mixed Hydrophilic and Hydrophobic Surfaces Under Laminar Flow Conditions

2021 ◽  
Author(s):  
Brian Frymyer ◽  
Alparslan Oztekin
1997 ◽  
Vol 86 (10) ◽  
pp. 1132-1137 ◽  
Author(s):  
Venkatramana M. Rao ◽  
Mengfen Lin ◽  
Cynthia K. Larive ◽  
Marylee Z. Southard

2003 ◽  
Vol 185 (18) ◽  
pp. 5632-5638 ◽  
Author(s):  
Konstantin Agladze ◽  
Debra Jackson ◽  
Tony Romeo

ABSTRACT The complex architecture of bacterial biofilms inevitably raises the question of their design. Microstructure of developing Escherichia coli biofilms was analyzed under static and laminar flow conditions. Cell attachment during early biofilm formation exhibited periodic density patterns that persisted during development. Several models for the origination of biofilm microstructure are considered, including an activator-inhibitor or Turing model.


2020 ◽  
Vol 222 ◽  
pp. 115706 ◽  
Author(s):  
Cláudio P. Fonte ◽  
David F. Fletcher ◽  
Pierrette Guichardon ◽  
Joelle Aubin

Sensors ◽  
2019 ◽  
Vol 19 (17) ◽  
pp. 3803
Author(s):  
Xiong Wang ◽  
Nantian Wang ◽  
Xiaobin Xu ◽  
Tao Zhu ◽  
Yang Gao

MEMS-based skin friction sensors are used to measure and validate skin friction and its distribution, and their advantages of small volume, high reliability, and low cost make them very important for vehicle design. Aiming at addressing the accuracy problem of skin friction measurements induced by existing errors of sensor fabrication and assembly, a novel fabrication technology based on visual alignment is presented. Sensor optimization, precise fabrication of key parts, micro-assembly based on visual alignment, prototype fabrication, static calibration and validation in a hypersonic wind tunnel are implemented. The fabrication and assembly precision of the sensor prototypes achieve the desired effect. The results indicate that the sensor prototypes have the characteristics of fast response, good stability and zero-return; the measurement ranges are 0–100 Pa, the resolution is 0.1 Pa, the repeatability accuracy and linearity are better than 1%, the repeatability accuracy in laminar flow conditions is better than 2% and it is almost 3% in turbulent flow conditions. The deviations between the measured skin friction coefficients and numerical solutions are almost 10% under turbulent flow conditions; whereas the deviations between the measured skin friction coefficients and the analytical values are large (even more than 100%) under laminar flow conditions. The error resources of direct skin friction measurement and their influence rules are systematically analyzed.


The Analyst ◽  
2011 ◽  
Vol 136 (5) ◽  
pp. 927-932 ◽  
Author(s):  
Naoya Jinno ◽  
Mari Murakami ◽  
Kiyoshi Mizohata ◽  
Masahiko Hashimoto ◽  
Kazuhiko Tsukagoshi

Author(s):  
Brian Frymyer ◽  
Alparslan Oztekin

Abstract When condensation first forms on a surface, it starts as tiny droplets. As the surface continues to collect condensation, the droplets grow together and form a film. The film increases the thermal resistance of the system. It is possible to remove the fluid from the condensing surface before it develops into a film. Dropwise condensation has the capability of providing up to an order of magnitude higher heat transfer than film condensation. A hydrophobic surface is capable of sustaining dropwise condensation but creates a high energy barrier that restricts nucleation. A hydrophilic surface has a low energy barrier for nucleation but retains the water quickly transitioning to film condensation. A hydrophilic and hydrophobic patterned surface creates a surface with a low nucleation energy barrier and is capable of sustaining dropwise condensation. Surface patterns are evaluated under laminar flow conditions to maximize mass collection. The surfaces are evaluated using a thermal model, which includes an equivalent thermal resistance for diffusion. Laminar flow rates are evaluated using Reynolds numbers from 1,218 to 4 × 105. Hydrophilic nodules sizes are evaluated from 0.1 mm to 3.7 mm. Under natural convection flow, mass collection can be increased by 20% with respect to film heat transfer.


2012 ◽  
Vol 28 (6) ◽  
pp. 617-620 ◽  
Author(s):  
Takahiro NOGAMI ◽  
Satoshi FUJINAGA ◽  
Naoya JINNO ◽  
Masahiko HASHIMOTO ◽  
Kazuhiko TSUKAGOSHI

Sign in / Sign up

Export Citation Format

Share Document