Explicit Time Integration of Multibody Systems Modelled With Three Rotation Parameters

2021 ◽  
Author(s):  
Stefan Holzinger ◽  
Johannes Gerstmayr
Author(s):  
Stefan Holzinger ◽  
Johannes Gerstmayr

Abstract Rigid bodies are an essential part of multibody systems. As there are six degrees of freedom in rigid bodies, it is natural but also precarious to use three parameters for the displacement and three parameters for the rotation parameters — since there is no singularity-free description of spatial rotations based on three rotation parameters. Standard formulations based on three rotation parameters avoid singularities, e.g. by applying reparameterization strategies during the time integration of the rotational kinematic equations. Alternatively, Euler parameters are commonly used to avoid singularities. State of the art approaches use Lie group methods, specifically integrators, to model rigid body motion without the need for the above mentioned solutions. However, the methods so far have been based on additional information, e.g., the rotation matrix, which has to been computed in each step. The latter procedure is thus difficult to be implemented in existing codes that are based on three rotation parameters. In this paper, we use the rotation vector to model large rotations. Whereby Lie group integration methods are used to compute consistent updates for the rotation vector in every time step. The resulting rotation vector update is finite, while the derivative of the rotation vector in the singularity becomes unbounded. The advantages of this method are shown in an example of a gyro. Additionally, the method is applied to a multibody system and the effects of crossing singularities are presented.


Author(s):  
Alfonso Callejo ◽  
Daniel Dopico

Algorithms for the sensitivity analysis of multibody systems are quickly maturing as computational and software resources grow. Indeed, the area has made substantial progress since the first academic methods and examples were developed. Today, sensitivity analysis tools aimed at gradient-based design optimization are required to be as computationally efficient and scalable as possible. This paper presents extensive verification of one of the most popular sensitivity analysis techniques, namely the direct differentiation method (DDM). Usage of such method is recommended when the number of design parameters relative to the number of outputs is small and when the time integration algorithm is sensitive to accumulation errors. Verification is hereby accomplished through two radically different computational techniques, namely manual differentiation and automatic differentiation, which are used to compute the necessary partial derivatives. Experiments are conducted on an 18-degree-of-freedom, 366-dependent-coordinate bus model with realistic geometry and tire contact forces, which constitutes an unusually large system within general-purpose sensitivity analysis of multibody systems. The results are in good agreement; the manual technique provides shorter runtimes, whereas the automatic differentiation technique is easier to implement. The presented results highlight the potential of manual and automatic differentiation approaches within general-purpose simulation packages, and the importance of formulation benchmarking.


2017 ◽  
Vol 50 (2) ◽  
pp. 77-96
Author(s):  
Juho Sormunen

One difficulty in the design of the load bearing components of mobile machines is the transient and non-linear nature of the loads acting on them. A common method for tracking these loads is to use strain gauges and force transducers on a physical test machine. An alternative method for determining the transient loads by means of a mathematical model that intends to describe the response of a John Deere 1010E forwarder as it crosses a test track is utilized in this study. The model is based on finite element method and it is solved using explicit time integration and LS-DYNA® software. As a result of this study a model capable of replicating the real world with a reasonable accuracy was obtained. The forces acting on tires, which can be considered the most important results of this work, can be used as boundary conditions in consequent analyses, such as fatigue simulation.


2021 ◽  
Vol 2090 (1) ◽  
pp. 012145
Author(s):  
Ryuma Honda ◽  
Hiroki Suzuki ◽  
Shinsuke Mochizuki

Abstract This study presents the impact of the difference between the implicit and explicit time integration methods on a steady turbulent flow field. In contrast to the explicit time integration method, the implicit time integration method may produce significant kinetic energy conservation error because the widely used spatial difference method for discretizing the governing equations is explicit with respect to time. In this study, the second-order Crank-Nicolson method is used as the implicit time integration method, and the fourth-order Runge-Kutta, second-order Runge-Kutta and second-order Adams-Bashforth methods are used as explicit time integration methods. In the present study, both isotropic and anisotropic steady turbulent fields are analyzed with two values of the Reynolds number. The turbulent kinetic energy in the steady turbulent field is hardly affected by the kinetic energy conservation error. The rms values of static pressure fluctuation are significantly sensitive to the kinetic energy conservation error. These results are examined by varying the time increment value. These results are also discussed by visualizing the large scale turbulent vortex structure.


1986 ◽  
Vol 65 (2) ◽  
pp. 253-272 ◽  
Author(s):  
L. Garcia ◽  
H.R. Hicks ◽  
B.A. Carreras ◽  
L.A. Charlton ◽  
J.A. Holmes

Sign in / Sign up

Export Citation Format

Share Document