Zero Moment Control for Lead-Through Teach Programming on a Collaborative Robot

2021 ◽  
Author(s):  
Stephen Canfield ◽  
Joseph Owens ◽  
Stephen Zuccaro
2018 ◽  
Vol 15 (6) ◽  
pp. 172988141880871 ◽  
Author(s):  
Saixuan Chen ◽  
Minzhou Luo ◽  
Guanwu Jiang ◽  
Omar Abdelaziz

The focus of this study is a moment compensation control algorithm driven by a direct current servo motor. Zero moment robot teaching is achieved with a joint moment compensation algorithm. The moment equilibrium equation is derived based on moment compensation. The current signal detected by a Hall effect sensor is multiplied by a torque constant to estimate the torque value of the robot joint. The compensation current is obtained through parameter identification to overcome gravitational and friction torques. The two variables of speed and position are separately controlled, allowing the compensation current of Coulomb friction and viscous friction force to be separated from the compensation current of friction torque. This study presents the system research, design, and development of a high-precision position control theory of a robot zero moment teaching control method. A collaborative robot is used as the test and verification platform to confirm the feasibility and effectiveness of the proposed theoretical method and implementation technology.


Author(s):  
A Josin Hippolitus ◽  
R. Senthilnathan ◽  
Omar Malla
Keyword(s):  

2021 ◽  
Vol 11 (9) ◽  
pp. 4269
Author(s):  
Kamil Židek ◽  
Ján Piteľ ◽  
Michal Balog ◽  
Alexander Hošovský ◽  
Vratislav Hladký ◽  
...  

The assisted assembly of customized products supported by collaborative robots combined with mixed reality devices is the current trend in the Industry 4.0 concept. This article introduces an experimental work cell with the implementation of the assisted assembly process for customized cam switches as a case study. The research is aimed to design a methodology for this complex task with full digitalization and transformation data to digital twin models from all vision systems. Recognition of position and orientation of assembled parts during manual assembly are marked and checked by convolutional neural network (CNN) model. Training of CNN was based on a new approach using virtual training samples with single shot detection and instance segmentation. The trained CNN model was transferred to an embedded artificial processing unit with a high-resolution camera sensor. The embedded device redistributes data with parts detected position and orientation into mixed reality devices and collaborative robot. This approach to assisted assembly using mixed reality, collaborative robot, vision systems, and CNN models can significantly decrease assembly and training time in real production.


2021 ◽  
Vol 11 (12) ◽  
pp. 5398
Author(s):  
Tomáš Kot ◽  
Zdenko Bobovský ◽  
Aleš Vysocký ◽  
Václav Krys ◽  
Jakub Šafařík ◽  
...  

We describe a method for robotic cell optimization by changing the placement of the robot manipulator within the cell in applications with a fixed end-point trajectory. The goal is to reduce the overall robot joint wear and to prevent uneven joint wear when one or several joints are stressed more than the other joints. Joint wear is approximated by calculating the integral of the mechanical work of each joint during the whole trajectory, which depends on the joint angular velocity and torque. The method relies on using a dynamic simulation for the evaluation of the torques and velocities in robot joints for individual robot positions. Verification of the method was performed using CoppeliaSim and a laboratory robotic cell with the collaborative robot UR3. The results confirmed that, with proper robot base placement, the overall wear of the joints of a robotic arm could be reduced from 22% to 53% depending on the trajectory.


2021 ◽  
Vol 54 ◽  
pp. 191-196
Author(s):  
Siegfried Hollerer ◽  
Clara Fischer ◽  
Bernhard Brenner ◽  
Maximilian Papa ◽  
Sebastian Schlund ◽  
...  

Materials ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 67
Author(s):  
Rodrigo Pérez Ubeda ◽  
Santiago C. Gutiérrez Rubert ◽  
Ranko Zotovic Stanisic ◽  
Ángel Perles Ivars

The rise of collaborative robots urges the consideration of them for different industrial tasks such as sanding. In this context, the purpose of this article is to demonstrate the feasibility of using collaborative robots in processing operations, such as orbital sanding. For the demonstration, the tools and working conditions have been adjusted to the capacity of the robot. Materials with different characteristics have been selected, such as aluminium, steel, brass, wood, and plastic. An inner/outer control loop strategy has been used, complementing the robot’s motion control with an outer force control loop. After carrying out an explanatory design of experiments, it was observed that it is possible to perform the operation in all materials, without destabilising the control, with a mean force error of 0.32%. Compared with industrial robots, collaborative ones can perform the same sanding task with similar results. An important outcome is that unlike what might be thought, an increase in the applied force does not guarantee a better finish. In fact, an increase in the feed rate does not produce significant variation in the finish—less than 0.02 µm; therefore, the process is in a “saturation state” and it is possible to increase the feed rate to increase productivity.


Author(s):  
Avesta Goodarzi ◽  
Fereydoon Diba ◽  
Ebrahim Esmailzadeh

Basically, there are two main techniques to control the vehicle yaw moment. First method is the indirect yaw moment control, which works on the basis of active steering control (ASC). The second one being the direct yaw moment control (DYC), which is based on either the differential braking or the torque vectoring. An innovative idea for the direct yaw moment control is introduced by using an active controller system to supervise the lateral dynamics of vehicle and perform as an active yaw moment control system, denoted as the stabilizer pendulum system (SPS). This idea has further been developed, analyzed, and implemented in a standalone direct yaw moment control system, as well as, in an integrated vehicle dynamic control system with a differential braking yaw moment controller. The effectiveness of SPS has been evaluated by model simulation, which illustrates its superior performance especially on low friction roads.


1971 ◽  
Vol 1 (1) ◽  
pp. 19-28 ◽  
Author(s):  
Roger L. Fosdick

Sign in / Sign up

Export Citation Format

Share Document