Mass Spring Interlocked Bladed Disk Model

2021 ◽  
Author(s):  
Oscar C\xe3\xb3Rdoba
Keyword(s):  
Author(s):  
Oualid Khemiri ◽  
Carlos Martel ◽  
Roque Corral

The Asymptotic Mistuning Model (AMM) is a recently introduced simplified method for the analysis of mistuning effects in the vibration characteristics of bladed disks. It is derived directly from the full mistuned bladed disk using an asymptotic expansion that exploits the smallness of the mistuning and the damping. The results from the AMM have been previously successfully verified using a simple 1-D mass-spring model. In this paper we validate the accuracy of AMM for the prediction of the effect of mistuning in realistic configurations. To this end, we perform a quantitative comparison between the AMM results and those from a detailed finite element method (FEM) numerical simulation of a complete mistuned bladed disk, for several mistuning patterns and forcing conditions. We also emphasize and comment the useful information provided by the AMM about the essential mechanisms involved in the mistuning effects on the vibration of cyclic structures.


Author(s):  
Oscar Córdoba

Abstract A simplified bladed disk model with cantilever and interlock conditions is described. Blade is composed of three masses, two for the lower and higher part of the shroud, and one for the main core of the blade. A similar scheme is employed in the disk. The different masses in the model are linked with springs introducing the stiffness between them. Additional disk restrictions reduce the model capabilities but account the effect of common boundary conditions. The model simplicity allows an analytical solution with polynomials to understand the fundamentals of vibration. The extended stiffness and mass matrix with Lagrange multipliers are used. The modal frequencies and modes as function of the nodal diameter are studied. The interlock solution is compared to cantilever and different sorts of frequency curves have been identified and classified. Some basic conclusions related to the model parameters are achieved.


2004 ◽  
Vol 126 (1) ◽  
pp. 175-183 ◽  
Author(s):  
E. P. Petrov

An effective method for analysis of periodic forced response of nonlinear cyclically symmetric structures has been developed. The method allows multiharmonic forced response to be calculated for a whole bladed disk using a periodic sector model without any loss of accuracy in calculations and modeling. A rigorous proof of the validity of the reduction of the whole nonlinear structure to a sector is provided. Types of bladed disk forcing for which the method may be applied are formulated. A multiharmonic formulation and a solution technique for equations of motion have been derived for two cases of description for a linear part of the bladed disk model: (i) using sector finite element matrices and (ii) using sector mode shapes and frequencies. Calculations validating the developed method and a numerical investigation of a realistic high-pressure turbine bladed disk with shrouds have demonstrated the high efficiency of the method.


1997 ◽  
Vol 119 (3) ◽  
pp. 428-438 ◽  
Author(s):  
Marc P. Mignolet ◽  
Chung-Chih Lin

The present investigation focused on the estimation of the parameters of a structural model to represent “at best” a set of measurements of the steady state response of a mistuned bladed disk. The applicability of the least squares and maximum likelihood approaches to the identification of the bladed disk model from this data is first investigated. The advantages and drawbacks of these techniques motivate the introduction of a new mixed least squares-maximum likelihood formulation which is shown to recover well the true model parameters from noisy simulated response data.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Hongbiao Yu ◽  
K. W. Wang

For bladed-disk assemblies in turbomachinery, the elements are often exposed to aerodynamic loadings, the so-called engine order excitations. It has been reported that such excitations could cause significant structural vibration. The vibration level could become even more excessive when the bladed disk is mistuned, and may cause fatigue damage to the engine components. To effectively suppress vibration in bladed disks, a piezoelectric transducer networking concept has been explored previously by the authors. While promising, the idea was developed based on a simplified bladed-disk model without considering the disk dynamics. To advance the state of the art, this research further extends the investigation with focus on new circuitry designs for a more sophisticated and realistic system model with the consideration of coupled-blade-disk dynamics. A novel multicircuit piezoelectric transducer network is synthesized and analyzed for multiple-harmonic vibration suppression of bladed disks. An optimal network is derived analytically. The performance of the network for bladed disks with random mistuning is examined through Monte Carlo simulation. The effects of variations (mistuning and detuning) in circuit parameters are also studied. A method to improve the system performance and robustness utilizing negative capacitance is discussed. Finally, experiments are carried out to demonstrate the vibration suppression capability of the proposed piezoelectric circuitry network.


Author(s):  
Carlos Martel ◽  
Salvador Rodríguez

Abstract The blade vibration level of an aerodynamically unstable rotor is a quantity of crucial importance to correctly estimate the blade fatigue life. This amplitude is the result of the balance between the energy pumped into the blades by the gas flow, and the nonlinear dissipation at the blade-disk contact interfaces. In a tuned configuration, the blade displacements can be described as a travelling wave consisting of one fundamental nodal diameter and frequency and its higher harmonics, and the problem can be reduced to the computation of a time periodic solution in just one sector. This simplification is no longer valid for a mistuned bladed disk. The resulting nonlinear vibration of the mistuned system is a combination of several travelling waves with different number of nodal diameters, coupled through mistuning. In this case, the complete bladed disk has to be considered, which requires an extremely high computational cost, and, for this reason, reduced order models (ROM) are required to analyze this situation. In this work, we use a 3 DOF/sector mass-spring system to describe the nonlinear friction saturation of the flutter vibration amplitude of a realistic mistuned bladed disk. The convergence of the solution of the mass-spring system is still quite slow because of the presence of many unstable modes with very similar growth rates. In order to speed-up the simulations a simpler asymptotic ROM is derived from the mass-spring model, which allows for much faster integration times. The simulations of the asymptotic ROM are compared with the measurements obtained in the European project FUTURE, where an aerodynamically unstable LPT rotor was tested with different intentional mistuning patterns.


Author(s):  
Adam Koscso ◽  
E. P. Petrov

Abstract One of the major sources of the damping of the forced vibration for bladed disk structures is the micro-slip motion at the contact interfaces of blade-disk joints. In this paper, the modeling strategies of nonlinear contact interactions at blade roots are examined using high-fidelity modelling of bladed disk assemblies and the nonlinear contact interactions at blade-disk contact patches. The analysis is performed in the frequency domain using multiharmonic harmonic balance method and analytically formulated node-to-node contact elements modelling frictional and gap nonlinear interactions. The effect of the number, location and distribution of nonlinear contact elements are analyzed using cyclically symmetric bladed disks. The possibility of using the number of the contact elements noticeably smaller than the total number of nodes in the finite element mesh created at the contact interface for the high-fidelity bladed disk model is demonstrated. The parameters for the modeling of the root damping are analysed for tuned and mistuned bladed disks. The geometric shapes of blade roots and corresponding slots in disks cannot be manufactured perfectly and there is inevitable root joint geometry variability within the manufacturing tolerances. Based on these tolerances, the extreme cases of the geometry variation are defined and the assessment of the possible effects of the root geometry variation on the nonlinear forced response are performed based on a set of these extreme cases.


2014 ◽  
Vol 137 (4) ◽  
Author(s):  
Carlos Martel ◽  
Roque Corral ◽  
Rahul Ivaturi

The computation of the final, friction saturated limit cycle oscillation amplitude of an aerodynamically unstable bladed-disk in a realistic configuration is a formidable numerical task. In spite of the large numerical cost and complexity of the simulations, the output of the system is not that complex: it typically consists of an aeroelastically unstable traveling wave (TW), which oscillates at the elastic modal frequency and exhibits a modulation in a much longer time scale. This slow time modulation over the purely elastic oscillation is due to both the small aerodynamic effects and the small nonlinear friction forces. The correct computation of these two small effects is crucial to determine the final amplitude of the flutter vibration, which basically results from its balance. In this work, we apply asymptotic techniques to consistently derive, from a bladed-disk model, a reduced order model that gives only the time evolution on the slow modulation, filtering out the fast elastic oscillation. This reduced model is numerically integrated with very low computational cost, and we quantitatively compare its results with those from the bladed-disk model. The analysis of the friction saturation of the flutter instability also allows us to conclude that: (i) the final states are always nonlinearly saturated TW; (ii) depending on the initial conditions, there are several different nonlinear TWs that can end up being a final state; and (iii) the possible final TWs are only the more flutter prone ones.


Author(s):  
Moustapha Mbaye ◽  
Christian Soize ◽  
Jean-Philippe Ousty

A new reduction method for vibration analysis of intentionally mistuned bladed disks is presented. The method is built for solving the dynamic problem of cyclic structures with geometric modifications. It is based on the use of the cyclic modes of the different sectors, which can be obtained from a usual cyclic symmetry modal analysis. Hence the projection basis is constituted; as well as, on the whole bladed disk, each sector matrix is reduced by its own modes. The method is validated numerically on a real bladed disk model, by comparing free and forced responses of a full model finite element analysis to those of a reduced-order model using the new reduction method.


Sign in / Sign up

Export Citation Format

Share Document