Optimization of Pin-Fin Heat Sinks for Impingement Cooling of Electronic Packages

2000 ◽  
Vol 122 (3) ◽  
pp. 240-246 ◽  
Author(s):  
Y. Kondo ◽  
H. Matsushima ◽  
T. Komatsu

Optimization of pin-fin heat sinks for impingement cooling of electronic components was studied. The study was based on a semi-empirical zonal model for determining thermal resistance as well as pressure drop. To test the validity of the model’s predictions, experiments and flow visualization were performed. The experimental results validated the model. The model enables cost-effective designs to be calculated in order to optimize pin-fin heat sinks. These calculations took into consideration 16 design parameters including pin diameter, minimum spacing between pins, and fin height. For the particular blower considered in our study, the optimum pin diameter was found being 0.35 mm. And the characteristics and limitations of air-cooling for such applications were investigated under various conditions. [S1043-7398(00)01704-7]

1998 ◽  
Vol 120 (3) ◽  
pp. 259-266 ◽  
Author(s):  
Y. Kondo ◽  
M. Behnia ◽  
W. Nakayama ◽  
H. Matsushima

The study of optimization of finned heat sinks for impingement cooling of electronic components was undertaken. The procedure was based on a semiempirical zonal approach to the determination of thermal resistance as well as pressure drop. To test the validity of the model’s predictions, experiments and CFD (computational fluid dynamics) simulations were performed. The results provided support for the approach. The model enables cost-effective design calculations to be performed for the optimization of heat sinks. We performed such calculations to optimize an LSI heat sink in consideration of sixteen design parameters, including fin thickness, fin spacing, fin height, and flow-orifice dimensions. For the particular application considered in our study, the optimum fin thickness was found to be 0.15 mm. The characteristics and limitations of air cooling for such applications were investigated under various conditions.


Author(s):  
Zhaojuan He ◽  
Patrick E. Phelan

With the development and increasing use of high-density components with their high power dissipation needs, electronic packages have required the investigation of innovative techniques for the efficient dissipation of heat. One prevalent method is the use of forced convection heat spreaders, called heat sinks, which are also widely used in Burn-In (BI) ovens. There are some contradictions remaining in recent research on modeling and Nusselt number correlations of heat sinks in forced air convection. This paper begins by reviewing past research for different finned heat sink geometries with and without bypass flow over the heat sinks. A new method called Least Volume Optimization is then proposed to analyze the thermal performance of finned heat sinks for BI air-cooling solutions. The analysis shows that the volumetric heat dissipation of a parallel plate fin heat sink is higher than that of a pin fin heat sink, based on an optimal fin geometry.


2010 ◽  
Vol 132 (12) ◽  
Author(s):  
S. S. Feng ◽  
T. Kim ◽  
T. J. Lu

This paper presents a cost effective semi-empirical analytical model for convective heat transfer in pin-fin heat sinks subjected to nonuniform heating set by a circular hot gas impinging jet. Based on empirical correlations taken from the open literature, temperature variations in the heat sink are obtained from the finite volume solution of the semi-empirical model. Based on a purpose-built experimental setup, measurements of a substrate temperature are performed using an infrared camera. These, along with the convective fluid temperature measured at the exit of the pin-fin array, are compared against analytical model predictions, with overall good agreement achieved. Subsequently, the influences of the convection Reynolds number, substrate thickness, and thermal conductivity of material on the distribution of substrate temperature are quantified by the validated model. It is demonstrated that the present model is capable of predicting local thermal behaviors such as the footprints of the pin fins. In addition, with the spreading resistance captured accurately, the model can be used for the design optimization of pin-fin/substrate systems subjected to nonuniform heating.


Author(s):  
Taehyun Kim ◽  
Eui Yeop Jung ◽  
Seungyeong Choi ◽  
Hee Seung Park ◽  
Changyong Lee ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document