Multi-Rate Feedforward Tracking Control for Plants With Nonminimum Phase Discrete Time Models

1999 ◽  
Vol 123 (3) ◽  
pp. 556-560 ◽  
Author(s):  
Yuping Gu ◽  
Masayoshi Tomizuka

This paper is concerned with performance enhancement of tracking control systems by multi-rate control. The feedback controller is updated at the same rate as the sampling rate of the output measurements. The feedforward controller processes the desired output signal for high accuracy tracking, and its output is updated at a rate N-times faster than the sampling rate of the output measurements. The discrete time model of the controlled plant may possess unstable zeros, and the zero phase error tracking controller (ZPETC) is used as a feedforward controller. Inter-sample behavior of the plant is included in evaluating the tracking performance of the multi-rate system. Illustrative examples are given to show advantages of the proposed multi-rate feedback/feedforward control scheme.

1993 ◽  
Vol 115 (2A) ◽  
pp. 238-245 ◽  
Author(s):  
Chia-Hsiang Menq ◽  
Jin-jae Chen

In this paper, a precision tracking control scheme for linear discrete time nonminimum-phase systems is proposed. This control scheme consists of a preview filter, a tracking-performance filter, a command feedforward controller, and a feedback controller. A command feedforward controller, whose design is based on the minimal order inverse model of the plant being controlled, will result in a completely decoupled system. The preview filter is introduced to compensate the phase and gain errors induced by the nonminimum phase zeros or lightly damped zeros of the system. Using the command feedforward controller along with the proposed preview filter, the tracking performance of the proposed control scheme can be characterized by the frequency response of the tracking-performance filter. For the design of the preview filter, a generalized Nth order preview filter and its associated penalty function that quantifies the tracking error of a design are defined. It is shown that, given the desired bandwidth and the order of the preview filter, the optimal solution for the design of the preview filter can be obtained explicitly. The proposed control scheme together with the optimal preview filter is shown to be very effective in achieving precision tracking control of discrete time MIMO nonminimum phase systems. It is also shown that the tracking performance is improved as the order N of the preview filter is increased.


2012 ◽  
Vol 2012 ◽  
pp. 1-8 ◽  
Author(s):  
R. Ghazali ◽  
Y. M. Sam ◽  
M. F. Rahmat ◽  
Zulfatman ◽  
A. W. I. M. Hashim

This paper presents a perfect tracking optimal control for discrete-time nonminimum phase of electrohydraulic actuator (EHA) system by adopting a combination of feedback and feedforward controller. A linear-quadratic regulator (LQR) is firstly designed as a feedback controller, and a feedforward controller is then proposed to eliminate the phase error emerged by the LQR controller during the tracking control. The feedforward controller is developed by implementing the zero phase error tracking control (ZPETC) technique in which the main difficulty arises from the nonminimum phase system with no stable inverse. Subsequently, the proposed controller is performed in simulation and experimental studies where the EHA system is represented in discrete-time model that has been obtained using system identification technique. It also shows that the controller offers better performance as compared to conventional PID controller in reducing phase and gain error that typically occurred in positioning or tracking systems.


1996 ◽  
Vol 118 (2) ◽  
pp. 178-187 ◽  
Author(s):  
E. D. Tung ◽  
M. Tomizuka ◽  
Y. Urushisaki

Experiments are performed for end milling aluminum at 15,000 RPM spindle speed (1,508 m/min cutting speed) and up to 3 m/min table feedrate using an experimental machine tool control system. A digital feedforward controller for feed drive control incorporates the Zero Phase Error Tracking Controller (ZPETC) and feedforward friction compensation. The controller achieves near-perfect (±3 μm) tracking over a 26 mm trajectory with a maximum speed of 2 m/min. The maximum contouring error for a 26 mm diameter circle at this speed is less than 4 μm. Tracking and contouring experiments are conducted for table feedrates as high as 10 m/min. Frequency domain analysis demonstrates that the feedforward controller achieves a bandwidth of 10 Hz without phase distortion. In a direct comparison of accuracy, the machining errors in specimens produced by the experimental controller were up to 20 times smaller than the errors in specimens machined by an industrial CNC.


2018 ◽  
Vol 32 (18) ◽  
pp. 1850201
Author(s):  
Liu Yang ◽  
Dongjie Li ◽  
Donghao Xu

This paper presents a robust tracking control with discrete-time linear quadratic regulation (LQR) method for micromanipulators. The micromanipulator is composed of three piezoelectric actuators (PEAs), which results in achieving three-degree-of-freedom motion. PEAs have been widely used in micromanipulation for biomedicine because of the advantages of its infinitely small displacement resolution and precision. However, owning to the nonlinear effects of PEAs, mainly hysteresis, can drastically degrade the tracking control accuracy. Therefore, it is desirable to develop advanced controllers to compensate hysteresis effect for improving the trajectory tracking performance. Before the controller design, a compensation for motion coupling error in vertical plane is concerned. Then, a controller consisting of three parts which are a nominal feedforward control input, a LQR control input and a control input based on system uncertainties compensation is designed. At last, the robust stability of the designed controller is proved through a Lyapunov stability analysis. The simulation results demonstrate that the proposed controller is effective in tracking applications, which can provide a high resolution performance.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Guangyue Xue ◽  
Xuemei Ren ◽  
Kexin Xing ◽  
Qiang Chen

This paper proposes a novel discrete-time terminal sliding mode controller (DTSMC) coupled with an asynchronous multirate sensor fusion estimator for rigid-link flexible-joint (RLFJ) manipulator tracking control. A camera is employed as external sensors to observe the RLFJ manipulator’s state which cannot be directly obtained from the encoders since gear mechanisms or flexible joints exist. The extended Kalman filter- (EKF-) based asynchronous multirate sensor fusion method deals with the slow sampling rate and the latency of camera by using motor encoders to cover the missing information between two visual samples. In the proposed control scheme, a novel sliding mode surface is presented by taking advantage of both the estimation error and tracking error. It is proved that the proposed controller achieves convergence results for tracking control in the theoretical derivation. Simulation and experimental studies are included to validate the effectiveness of the proposed approach.


Author(s):  
Masayoshi Tomizuka ◽  
Liting Sun

Abstract Zero phase error tracking (ZPET) control has gained popularity as a simple yet effective feedforward control method for tracking time varying desired trajectories by the plant output. In this paper, we will show that the zero-order hold equivalent of continuous time transfer function, i.e. pulse transfer function, naturally has a property to realize zero phase effort tracking. This property is exploited to realize a simple implementation of zero phase error tracking control. The effectiveness of the proposed approach is demonstrated by simulations.


Sign in / Sign up

Export Citation Format

Share Document