Film Cooling Discharge Coefficient Measurements in a Turbulated Passage With Internal Crossflow

2001 ◽  
Vol 123 (4) ◽  
pp. 774-780 ◽  
Author(s):  
Ronald S. Bunker ◽  
Jeremy C. Bailey

Gas turbine blades utilize internal geometry such as turbulator ribs for improved cooling. In some designs it may be desirable to benefit from the internal cooling enhancement of ribs as well as external film cooling. An experimental study has been performed to investigate the effect of turbulator rib placement on film hole discharge coefficient. In the study, a square passage having a hydraulic diameter of 1.27 cm is used to feed a single angled film jet. The film hole angle to the surface is 30 deg and the hole length-to-diameter ratio is 4. Turbulators were placed in one of three positions: upstream of film hole inlet, downstream of film hole inlet, and with the film hole inlet centered between turbulators. For each case 90 deg turbulators with a passage blockage of 15 percent and a pitch to height ratio of 10 were used. Tests were run varying film hole-to-crossflow orientation as 30, 90, and 180 deg, pressure ratio from 1.02 to 1.8, and channel crossflow velocity from Mach 0 to 0.3. Film hole flow is captured in a static plenum with no external crossflow. Experimental results of film discharge coefficients for the turbulated cases and for a baseline smooth passage are presented. Alignment of the film hole entry with respect to the turbulator is shown to have a substantial effect on the resulting discharge coefficients. Depending on the relative alignment and flow direction discharge coefficients can be increased or decreased 5–20 percent from the nonturbulated case, and in the worst instance experience a decrease of as much as 50 percent.

Author(s):  
Ronald S. Bunker ◽  
Jeremy C. Bailey

Gas turbine blades utilize internal geometry such as turbulator ribs for improved cooling. In some designs it may be desirable to benefit from the internal cooling enhancement of ribs as well as external film cooling. An experimental study has been performed to investigate the effect of turbulator rib placement on film hole discharge coefficient. In the study a square passage having a hydraulic diameter of 1.27 cm is used to feed a single angled film jet. The film hole angle to the surface is 30° and the hole length-to-diameter ratio is 4. Turbulators were placed in one of three positions: upstream of film hole inlet, downstream of film hole inlet, and with the film hole inlet centered between turbulators. For each case 90° turbulators with a passage blockage of 15% and a pitch to height ratio of 10 were used. Tests were run varying film hole-to-cross flow orientation as 30°, 90°, and 180°, pressure ratio from 1.02 to 1.8, and channel cross flow velocity from Mach 0 to 0.3. Film hole flow is captured in a static plenum with no external cross flow. Experimental results of film discharge coefficients for the turbulated cases and for a baseline smooth passage are presented. Alignment of the film hole entry with respect to the turbulator is shown to have a substantial effect on the resulting discharge coefficients. Depending on the relative alignment and flow direction, discharge coefficients can be increased or decreased 5 to 20% from the non-turbulated case, and in the worst instance experience a decrease of as much as 50%.


1994 ◽  
Vol 116 (1) ◽  
pp. 92-96 ◽  
Author(s):  
N. Hay ◽  
S. E. Henshall ◽  
A. Manning

In the cooling passages of gas turbine blades, branches are often angled to the direction of the internal flow. This is particularly the case with film cooling holes. Accurate knowledge of the discharge coefficient of such holes at the design stage is vital so that the holes are correctly sized, thus avoiding wastage of coolant and the formation of hot spots on the blade. This paper describes an experimental investigation to determine the discharge coefficient of 30 deg inclined holes with various degrees of inlet radiusing and with the axis of the hole at various orientation angles to the direction of the flow. Results are given for nominal main flow Mach numbers of 0, 0.15, and 0.3. The effects of radiusing, orientation, and crossflow Mach number are quantified in the paper, the general trends are described, and the criteria for optimum performance are identified.


Author(s):  
N. Hay ◽  
S. E. Henshall ◽  
A. Manning

In the cooling passages of gas turbine blades, branches are often angled to the direction of the internal flow. This is particularly the case with film cooling holes. Accurate knowledge of the discharge coefficient of such holes at the design stage is vital so that the holes are correctly sized thus avoiding wastage of coolant and the formation of hot spots on the blade. This paper describes an experimental investigation to determine the discharge coefficient of 30° inclined holes with various degrees of inlet radiusing and with the axis of the hole at various orientation angles to the direction of the flow. Results are given for nominal main flow Mach numbers of 0, 0.15 and 0.3. The effects of radiusing, orientation and cross flow Mach number are quantified in the paper, the general trends are described, and the criteria for optimum performance are identified.


2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Sebastien Wylie ◽  
Alexander Bucknell ◽  
Peter Forsyth ◽  
Matthew McGilvray ◽  
David R. H. Gillespie

Internal cooling passages of turbine blades have long been at risk to blockage through the deposition of sand and dust during fleet service life. The ingestion of high volumes of volcanic ash (VA) therefore poses a real risk to engine operability. An additional difficulty is that the cooling system is frequently impossible to inspect in order to assess the level of deposition. This paper reports results from experiments carried out at typical high pressure (HP) turbine blade metal temperatures (1163 K to 1293 K) and coolant inlet temperatures (800 K to 900 K) in engine scale models of a turbine cooling passage with film-cooling offtakes. Volcanic ash samples from the 2010 Eyjafjallajökull eruption were used for the majority of the experiments conducted. A further ash sample from the Chaiten eruption allowed the effect of changing ash chemical composition to be investigated. The experimental rig allows the metered delivery of volcanic ash through the coolant system at the start of a test. The key metric indicating blockage is the flow parameter (FP), which can be determined over a range of pressure ratios (1.01–1.06) before and after each experiment, with visual inspection used to determine the deposition location. Results from the experiments have determined the threshold metal temperature at which blockage occurs for the ash samples available, and characterize the reduction of flow parameter with changing particle size distribution, blade metal temperature, ash sample composition, film-cooling hole configuration and pressure ratio across the holes. There is qualitative evidence that hole geometry can be manipulated to decrease the likelihood of blockage. A discrete phase computational fluid dynamics (CFD) model implemented in Fluent has allowed the trajectory of the ash particles within the coolant passages to be modeled, and these results are used to help explain the behavior observed.


Author(s):  
Sebastien Wylie ◽  
Alexander Bucknell ◽  
Peter Forsyth ◽  
Matthew McGilvray ◽  
David R. H. Gillespie

Internal cooling passages of turbine blades have long been at risk to blockage through the deposition of sand and dust during fleet service life. The ingestion of high volumes of volcanic ash therefore poses a real risk to engine operability. An additional difficulty is that the cooling system is frequently impossible to inspect in order to assess the level of deposition. This paper reports results from experiments carried out at typical HP turbine blade metal temperatures (1163K to 1293K) and coolant inlet temperatures (800K to 900K) in engine scale models of a turbine cooling passage with film-cooling offtakes. Volcanic ash samples from the 2010 Eyjafjallajökull eruption were used for the majority of the experiments conducted. A further ash sample from the Chaiten eruption allowed the effect of changing ash chemical composition to be investigated. The experimental rig allows the metered delivery of volcanic ash through the coolant system at the start of a test. The key metric indicating blockage is the flow parameter which can be determined over a range of pressure ratios (1.01–1.06) before and after each experiment, with visual inspection used to determine the deposition location. Results from the experiments have determined the threshold metal temperature at which blockage occurs for the ash samples available, and characterise the reduction of flow parameter with changing particle size distribution, blade metal temperature, ash sample composition, film-cooling hole configuration and pressure ratio across the holes. There is qualitative evidence that hole geometry can be manipulated to decrease the likelihood of blockage. A discrete phase CFD model implemented in Fluent has allowed the trajectory of the ash particles within the coolant passages to be modelled, and these results are used to help explain the behaviour observed.


Author(s):  
T. S. Dhanasekaran ◽  
Ting Wang

Film cooling technique has been successfully applied to gas turbine blades to prevent it from the hot flue gas. However, a continuous demand of increasing the turbine inlet temperature to raise the efficiency of the turbine requires continuous improvement in film cooling effectiveness. The concept of injecting mist (tiny water droplets) into the cooling fluid has been proven under laboratory conditions to significantly augment adiabatic cooling effectiveness 50–800% in convective heat transfer and impingement cooling. The similar concept of ejecting mist into air film cooling has not been proven in the laboratory, but computational simulation has been performed on stationary turbine blades. As a continuation of previous research, this paper extends the mist film cooling scheme to the rotating turbine blade. For the convenience of understanding the effect of rotation, the simulation is first conducted with a single pair of cooling hole located near the leading edge at either side of the blade. Then a row of multiple-hole film cooling jets are simulated at stationary and rotational condition. Operating condition under both the laboratory (baseline) and elevated gas turbine conditions are simulated and compared. The effects of various parameters including mist concentration, water droplet diameter, droplet wall boundary condition, blowing ratio, and rotational speed are investigated. The results showed the effect of rotation on droplets at lab condition is minimal. The CFD model employed the Discrete Phase Model (DPM) including both wall film and droplet reflect conditions. The results showed that the droplet-wall interaction is stronger on the pressure side than on the suction side resulting in a higher mist cooling enhancement on the pressure side. The average mist cooling enhancement of about 15% and 35% are achieved on the laboratory and elevated conditions, respectively. This translates into a significant blade surface temperature reduction of 100–125 K with 10% mist injection at elevated condition.


2004 ◽  
Vol 10 (2) ◽  
pp. 145-153 ◽  
Author(s):  
M. E. Taslim ◽  
S. Ugarte

Diffusion-shaped film holes with compound angles are currently being investigated for high temperature gas turbine airfoil film cooling. An accurate prediction of the coolant blowing rate through these film holes is essential in determining the film effectiveness. Therefore, the discharge coefficients associated with these film holes for a range of hole pressure ratios is essential in designing airfoil cooling circuits. Most of the available discharge coefficient data in open literature has been for cylindrical holes. The main objective of this experimental investigation was to measure the discharge coefficients for subsonic as well as supersonic pressure ratios through a single conical-diffusion hole. The conical hole has an exit-to-inlet area ratio of 4, a nominal flow length-to-inlet diameter ratio of 4, and an angle with respect to the exit plane (inclination angle) of 0°, 30°, 45°, and 60°. Measurements were performed with and without a cross-flow. For the cases with a cross-flow, discharge coefficients were measured for each of the hole geometries and 5 angles between the projected conical hole axis and the cross-flow direction of 0°, 45°, 90°, 135°, and 180°. Results are compared with available data in open literature for cylindrical film holes as well as limited data for conical film holes.


Author(s):  
M. Gritsch ◽  
A. Schulz ◽  
S. Wittig

This paper presents the discharge coefficients of three film-cooling hole geometries tested over a wide range of flow conditions. The hole geometries include a cylindrical hole and two holes with a diffuser shaped exit portion (i.e. a fanshaped and a laidback fanshaped hole). The flow conditions considered were the crossflow Mach number at the hole entrance side (up to 0.6), the crossflow Mach number at the hole exit side (up to 1.2), and the pressure ratio across the hole (up to 2). The results show that the discharge coefficient for all geometries tested strongly depends on the flow conditions (crossflows at hole inlet and exit, and pressure ratio). The discharge coefficient of both expanded holes was found to be higher than of the cylindrical hole, particularly at low pressure ratios and with a hole entrance side crossflow applied. The effect of the additional layback on the discharge coefficient is negligible.


2014 ◽  
Vol 695 ◽  
pp. 371-375
Author(s):  
Nor Azwadi Che Sidik ◽  
Shahin Salimi

Gas turbine cooling can be classified into two different schemes; internal and external cooling. In internal cooling method, the coolant provided by compressor is forced into the cooling flow circuits inside turbine components. Meanwhile, for the external cooling method, the injected coolant is directly perfused from coolant manifold to save downstream components against hot gases. Furthermore, in the latter coolant scheme, coolant is used to quell the heat transfer from hot gas stream to a component. There are several ways in external cooling. Film cooling is one of the best cooling systems for the application on gas turbine blades. This study concentrates on the comparison of experimental, computational and numerical investigations of advanced film cooling performance for cylindrical holes at different angles and different blowing ratios in modern turbine gas.


Author(s):  
Michael Gritsch ◽  
Christian Saumweber ◽  
Achmed Schulz ◽  
Sigmar Wittig ◽  
Edwin Sharp

Discharge coefficients of three film-cooling hole geometries are presented over a wide range of engine like conditions. The hole geometries comprise a cylindrical hole and two holes with a diffuser shaped exit portion (a fanshaped and a laidback fanshaped hole). For all three hole geometries the hole axis was inclined 30° with respect to the direction of the external (hot gas) flow. The flow conditions considered were the hot gas crossflow Mach number (up to 0.6), the coolant crossflow Mach number (up to 0.6) and the pressure ratio across the hole (up to 2). The effect of internal crossflow approach direction, perpendicular or parallel to the main flow direction, is particularly addressed in the present study. Comparison is made of the results for a parallel and perpendicular orientation, showing that the coolant crossflow orientation has a strong impact on the discharge behavior of the different hole geometries. The discharge coefficients were found to strongly depend on both hole geometry and crossflow conditions. Furthermore, the effects of internal and external crossflow on the discharge coefficients were described by means of correlations used to derive a predicting scheme for discharge coefficients. A comparison between predictions and measurements reveals the capability of the method proposed.


Sign in / Sign up

Export Citation Format

Share Document