Scaling Effect on Prediction of Cavitation Inception in a Line Vortex Flow

2003 ◽  
Vol 125 (1) ◽  
pp. 53-60 ◽  
Author(s):  
Chao-Tsung Hsiao ◽  
Georges L. Chahine ◽  
Han-Lieh Liu

The current study considers the prediction of tip vortex cavitation inception at a fundamental physics based level. Starting form the observation that cavitation inception detection is based on the “monitoring” of the interaction between bubble nuclei and the flow field, the bubble dynamics is investigated in detail. A spherical model coupled with a bubble motion equation is used to study numerically the dynamics of a nucleus in an imposed flow field. The code provides bubble size and position versus time as well as the resulting pressure at any selected monitoring position. This model is used to conduct a parametric study. Bubble size and emitted sound versus time are presented for various nuclei sizes and flow field scales in the case of an ideal Rankine vortex to which a longitudinal viscous core size diffusion model is imposed. Based on the results, one can deduce cavitation inception with the help of either an “optical inception criterion” (maximum bubble size larger than a given value) or an “acoustical inception criterion” (maximum detected noise higher than a given background value). We use here such criteria and conclude that scaling effects can be inherent to the way in which these criteria are exercised if the bubble dynamics knowledge is not taken into account.

Author(s):  
Chao-Tsung Hsiao ◽  
Georges L. Chahine

A Surface-Averaged Pressure (SAP) spherical bubble dynamics model accounting for a statistical nuclei size distribution was used to model the acoustic signals generated by cavitating bubbles near inception in a tip vortex flow. The flow field generated by finite-span elliptic hydrofoils is obtained by Reynolds-Averaged Navier-Stokes computations. An “acoustic” criterion which defines the cavitation inception by counting the number of acoustical signal peaks that exceed a certain level per unit time was applied to deduce the cavitation inception number for different scales. It was found that the larger scale results in more cavitation inception events per unite time because more nuclei are excited by the tip vortex at the larger scale. The nuclei size was seen to have an important effect on cavitation inception number with scaling effects due to nuclei increasing as nuclei sizes decreases.


2020 ◽  
Vol 10 (23) ◽  
pp. 8721
Author(s):  
Garam Ku ◽  
Cheolung Cheong ◽  
Ilryong Park ◽  
Hanshin Seol

In this study, the high-fidelity numerical methods are developed to investigate the tip vortex cavitation (TVC) inception and noise of underwater propellers, namely, Model-A and Model-B, which are designed to investigate the effects of sweep angle on cavitation inception and noise. In addition, the entire body of the DARPA Suboff submarine is included to consider the effects of the inflow distortion originating from the boundary layer flow of the submarine body on the cavitating flow of the propellers. The Eulerian approach consisting of Reynolds-averaged Navier–Stokes (RANS) solver and the vortex model is coupled with the Lagrangian approach using the bubble dynamics equations and the acoustic analogy for nuclei initially distributed in inlet flow. First, three-dimensional incompressible unsteady RANS simulations are performed to predict the hydrodynamic flow field driven by underwater propellers installed on a DARPA Suboff submarine body. The Scully vortex model and dissipation vortex model (DVM) are used to regenerate the tip vortex dissipated by artificial numerical damping and low grid resolution around the vortex core center, which is identified by using minimum λ2-criterion in the swirling flow field originating from the propeller blade tip. Then, tip vortex cavitation inception is simulated by applying the bubble dynamics equations to nuclei initially distributed in the inflow region. The volume and location of each nucleus are obtained by solving the bubble dynamics equations on the flow field obtained using the Eulerian method. Finally, the cavitation noise is predicted by modeling each bubble with a point monopole source whose strength is proportional to its volume acceleration. The validity of the present numerical methods is confirmed by comparing the predicted acoustic pressure spectrum with the measured ones.


2005 ◽  
Vol 127 (1) ◽  
pp. 55-65 ◽  
Author(s):  
Chao-Tsung Hsiao ◽  
Georges L. Chahine

The acoustic pressure generated by cavitation inception in a tip vortex flow was simulated in water containing a realistic bubble nuclei size distribution using a surface-averaged pressure (SAP) spherical bubble dynamics model. The flow field was obtained by the Reynolds-averaged Navier–Stokes computations for three geometrically similar scales of a finite-span elliptic hydrofoil. An “acoustic” criterion, which defines cavitation inception as the flow condition at which the number of acoustical “peaks” above a pre-selected pressure level exceeds a reference number per unit time, was applied to the three scales. It was found that the scaling of cavitation inception depended on the reference values (pressure amplitude and number of peaks) selected. Scaling effects (i.e., deviation from the classical σi∝Re0.4) increase as the reference inception criteria become more stringent (lower threshold pressures and less number of peaks). Larger scales tend to detect more cavitation inception events per unit time than obtained by classical scaling because a relatively larger number of nuclei are excited by the tip vortex at the larger scale due to simultaneous increase of the nuclei capture area and of the size of the vortex core. The average nuclei size in the nuclei distribution was also found to have an important impact on cavitation inception number. Scaling effects (i.e., deviation from classical expressions) become more important as the average nuclei size decreases.


1999 ◽  
Vol 121 (1) ◽  
pp. 198-204 ◽  
Author(s):  
Chao-Tsung Hsiao ◽  
Laura L. Pauley

The Rayleigh-Plesset bubble dynamics equation coupled with the bubble motion equation developed by Johnson and Hsieh was applied to study the real flow effects on the prediction of cavitation inception in tip vortex flows. A three-dimensional steady-state tip vortex flow obtained from a Reynolds-Averaged Navier-Stokes computation was used as a prescribed flow field through which the bubble was passively convected. A “window of opportunity” through which a candidate bubble must pass in order to be drawn into the tip-vortex core and cavitate was determined for different initial bubble sizes. It was found that bubbles with larger initial size can be entrained into the tip-vortex core from a larger window size and also had a higher cavitation inception number.


2020 ◽  
Vol 10 (17) ◽  
pp. 5897 ◽  
Author(s):  
Garam Ku ◽  
Cheolung Cheong ◽  
Hanshin Seol

In this study, a numerical methodology is developed to investigate the tip-vortex cavitation of NACA16-020 wings and their flow noise. The numerical method consists of a sequential one-way coupled application of Eulerian and Lagrangian approaches. First, the Eulerian method based on Reynolds-averaged Navier–Stokes equation is applied to predict the single-phase flow field around the wing, with particular emphasis on capturing high-resolution tip-vortex flow structures. Subsequently, the tip-vortex flow field is regenerated by applying the Scully vortex model. Secondly, the Lagrangian approach is applied to predict the tip-vortex cavitation inception and noise of the wing. The initial nuclei are distributed upstream of the wing. The subsequent time-varying size and position of each nucleus are traced by solving spherically symmetric bubble dynamics equations for the nuclei in combination with the flow field predicted from the Eulerian approach. The acoustic pressure at the observer position is computed by modelling each bubble as a point source. The numerical results of the acoustic pressure spectrum are best matched to the measured results when the nuclei number density of freshwater is used. Finally, the current numerical method is applied to the flows of various cavitation numbers. The results reveal that the cavitation inception determined by the predicted acoustic pressure spectrum well matched the experimental result.


1986 ◽  
Vol 108 (4) ◽  
pp. 444-452 ◽  
Author(s):  
G. L. Chahine ◽  
Y. T. Shen

To improve the understanding of the scaling effects of nuclei on cavitation inception, bubble dynamics, multibubble interaction effects, and bubble-mean flow interaction in a venturi Cavitation Susceptibility Meter are considered theoretically. The results are compared with classical bubble static equilibrium predictions. In a parallel effort, cavitation susceptibility measurements of ocean and laboratory water were carried out using a venturi device. The measured cavitation inception indices were found to relate to the measured microbubble concentration. The relationship between the measured cavitation inception and bubble concentration and distribution can be explained by using the theoretical predictions. A tentative explanation is given for the observation that the number of cavitation bursting events measured by an acoustic device is sometimes an order of magnitude lower than the number of microbubbles measured by the light scattering detector. The questions addressed here add to the fundamental knowledge needed if the cavitation susceptibility meter is to be used effectively for the measurement of microbubble size distributions.


Author(s):  
Seung-Jin Jeong ◽  
Suk-Yoon Hong ◽  
Jee-Hun Song ◽  
Hyun-Wung Kwon ◽  
Han-Shin Seol

Cavitation occurs on objects that move underwater at high speeds, and it is accompanied by an increase in hull vibrations, a reduction in propulsion performance, and an increase in noise that is important for warships and submarines. Of the various types of cavitations, tip vortex cavitations (TVC) are the earliest occurring and are considered the most important in terms of cavitation inception speed (CIS). This study predicts the cavitation inception speed by conducting cavitation noise analyses. The trend of the noise according to the cavitation numbers before and after CIS was analysed, and the quantitative criteria to determine the CIS were presented through established procedures. The CIS value obtained through the analysis was verified by comparing it against the value obtained experimentally. The methods used to analyse the cavitation inception speed are developed using bubble dynamics for cavitation noises. First, flow-field information was obtained downstream of the wing to estimate the external force acting on the bubbles, and this was used to calculate the behaviour of the cavitation bubbles. The bubble dynamics analyses were performed for each cavitation nuclei by Lagrange approach to calculate the behaviour of the bubbles. The number of cavitation nuclei was calculated based on the density function with random placement upstream of the wing. The cavitation noise was analysed for various cavitation numbers, and the tendency of the noise generated for each case was investigated. The noise analysis results and the CIS predictions were compared and verified with the measured values in the Large Cavitation Tunnel (LCT) of the Korea Research Institute of Ship & Ocean Engineering (KRISO). Using these results, the effect of the tip vortex cavitation on the total flow noise was analysed, and CIS determination criteria using noise values was validated and established.


1993 ◽  
Vol 115 (3) ◽  
pp. 497-503 ◽  
Author(s):  
G. L. Chahine ◽  
G. F. Frederick ◽  
R. D. Bateman

This paper presents results of experiments where selective injection of a drag-reducing polymer solution into the tip vortex region of the blades of an 11.5 in. diameter propeller was effective in significantly delaying tip vortex cavitation. The most critical phase of the investigation was the selection of the position of the injection ports. For well-positioned injection ports, at a fixed water channel speed the propeller cavitation number had to be decreased by as much as 35 percent in order to reestablish cavitation inception. Injections of water and a viscous mixture of water and glycerin for the same conditions did not affect the inception characteristics of the modified blades. Preliminary analysis of the results indicates that the viscoelastic properties of the Polyox solution injected in the vortex core played a significant role in thickening the viscous core of the tip vortex and thus reducing the pressure drop at the vortex center without affecting circulation or lift.


Author(s):  
Wen Wu ◽  
Barclay G. Jones

The crud deposition on nuclear fuel assembly cladding generally increases the resistance to heat transfer, which may result in deterioration of thermal performance, degradation of the fuel cladding, and an axial power shift, i.e. Axial Offset Anomaly (AOA). Crud formation continues to elude prediction. An operational difficulty, of not being able to accurately determine power safety margin, then arises. In some cases, this condition has required decreasing the core power by as much as thirty percent, hence, resulting in considerable loss of revenue for the utility. The specific purpose of this study is to examine bubble dynamics, flow characteristics of the surrounding fluid, and its impact on the formation of the curd. The presence of a bubble on the clad surface affects the flow field around it , particularly in forming a stagnant flow region behind the bubble. The temperature difference between the bubble and the bulk coolant surrounding it causes vaporization at the bubble-clad interface and condensation at its apex. Pure water is thereby moved into the bubble through vaporization resulting in the concentration of solutes in the water at the bubble/wall surface region, which may cause their precipitation on and/or attachment to the clad surface, thereby initiating crud deposition. We investigate analytically and numerically, the growth of a bubble in the boundary layer and the influence of the bubble on the flow. Because of the small bubble size, a spherical model of the bubble is selected for our research. A two-step calculation is applied to this model. In the first step, bubble growth is estimated analytically with omission of the effect of the bulk fluid velocity, a reasonable approximation. In the second step, the flow field around the stationary bubble is obtained through numerical methods. Some parameters in PWR operating condition have been determined approximately e.g. size of the bubble, boundary layer thickness, flow velocity and drag forces on the bubble.


Author(s):  
Jin-Keun Choi ◽  
Georges L. Chahine

A study on the tip vortex cavitation inception based on extreme bubble deformation and jet noise is presented. First, two preliminary experiments are performed to provide a correlation between the numerically computed splitting/jet noise and the measured noise. The bubble behavior and pressure signal predicted by the axisymmetric method are compared with those recorded simultaneously by using a high-speed video camera and hydrophone. Then, numerical studies on the bubble behavior in the tip vortex flow field are conducted. The tip vortex flow near a hydrofoil is provided by a viscous flow computation, and the bubble behavior is simulated by an axisymmetric boundary element method based on the provided vortex flow field. The characteristics of the bubble behavior and jet noise over a range of cavitation numbers are investigated. The effect of initial bubble nucleus size and the Reynolds number effect of the tip vortex flow on the tip vortex cavitation inception, the bubble behavior including its splitting, and jet noise are also discussed.


Sign in / Sign up

Export Citation Format

Share Document