Advanced Catalytic Pilot for Low NOx Industrial Gas Turbines

2003 ◽  
Vol 125 (4) ◽  
pp. 879-884 ◽  
Author(s):  
H. Karim ◽  
K. Lyle ◽  
S. Etemad ◽  
L. L. Smith ◽  
W. C. Pfefferle ◽  
...  

This paper describes the design and testing of a catalytically stabilized pilot burner for current and advanced Dry Low NOx (DLN) gas turbine combustors. In this paper, application of the catalytic pilot technology to industrial engines is described using Solar Turbines’ Taurus 70 engine. The objective of the work described is to develop the catalytic pilot technology and document the emission benefits of catalytic pilot technology when compared to higher, NOx producing pilots. The catalytic pilot was designed to replace the existing pilot in the existing DLN injector without major modification to the injector. During high-pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over wide range of combustion temperatures. The catalytic reactor lit off at a temperature of approximately 598 K (325°C/617°F) and operated at simulated 100% and 50% load conditions without a preburner. At high pressure, the maximum catalyst surface temperature was similar to that observed during atmospheric pressure testing and considerably lower than the surface temperature expected in lean-burn catalytic devices. In single-injector rig testing, the integrated assembly of the catalytic pilot and Taurus 70 injector demonstrated NOx and CO emission less than 5 ppm @ 15% O2 for 100% and 50% load conditions along with low acoustics. The results demonstrate that a catalytic pilot burner replacing a diffusion flame or partially premixed pilot in an otherwise DLN combustor can enable operation at conditions with substantially reduced NOx emissions.

Author(s):  
Hasan Karim ◽  
Kent Lyle ◽  
Shahrokh Etemad ◽  
Lance Smith ◽  
William Pfefferle ◽  
...  

This paper describes the design and testing of a catalytically-stabilized pilot burner for current and advanced Dry Low NOx (DLN) gas turbine combustors. In this paper, application of the catalytic pilot technology to industrial engines is described using Solar Turbines’ Taurus 70 engine. The objective of the work described is to develop the catalytic pilot technology and document the emission benefits of catalytic pilot technology when compared to higher, NOx producing pilots. The catalytic pilot was designed to replace the existing pilot in the existing DLN injector without major modification to the injector. During high pressure testing, the catalytic pilot showed no incidence of flashback or autoignition while operating over wide range of combustion temperatures. The catalytic reactor lit off at a temperature of approximately 598K (325°C/617°F) and operated at simulated 100% and 50% load conditions without a preburner. At high pressure, the maximum catalyst surface temperature was similar to that observed during atmospheric pressure testing and considerably lower than the surface temperature expected in lean-burn catalytic devices. In single injector rig testing, the integrated assembly of the catalytic pilot and Taurus 70 injector demonstrated NOx and CO emission less than 5 ppm @ 15% O2 for 100% and 50% load conditions along with low acoustics. The results demonstrate that a catalytic pilot burner replacing a diffusion flame or partially-premixed pilot in an otherwise DLN combustor can enable operation at conditions with substantially reduced NOx emissions.


Author(s):  
A. G. Salsi ◽  
F. S. Bhinder

Industrial gas turbines operate over a wide range of combinations of loads and speeds. The fuel control valve must be designed to cover the entire range precisely. The design of an electrically operated fuel control valve is described and comparison between the predicted and measured performance characteristics is shown.


Author(s):  
Kexin Liu ◽  
John P. Wood ◽  
Eoghan R. Buchanan ◽  
Pete Martin ◽  
Victoria E. Sanderson

Atmospheric and high pressure rig tests were conducted to investigate the feasibility of using biodiesel as an alternative fuel to power industrial gas turbines in one of the world’s leading dry low emissions (DLE) combustion systems, the SGT-100. At the same conditions, tests were also carried out for mineral diesel to provide reference information to evaluate biodiesel as an alternative fuel. In atmospheric pressure rig tests, the likelihood of the machine lighting was identified based on the measured probability of the ignition of a single combustor. Lean ignition and extinction limits at various air temperatures were also investigated with different air assist pressures. The ignition test results reveal that reliable ignition can be achieved with biodiesel across a range of air mass flow rates and air fuel ratios (AFRs). In high pressure rig tests, emissions and combustion dynamics were measured for various combustor air inlet pressures, temperatures, combustor wall pressure drops, and flame temperatures. These high pressure rig results show that biodiesel produced less NOx than mineral diesel. The test results indicate that the Siemens DLE combustion system can be adapted to use biodiesel as an alternative fuel without major modification.


1979 ◽  
Vol 21 (5) ◽  
pp. 367-371
Author(s):  
Y. A. Lesokhin

One possible way to improve the aerodynamic performance of turbomachines is to analyse and generalize existing results obtained from design and testing. These can be applied to develop a quantitative relationship between the geometry of various regions of the flow path and turbomachine performance. An optimal correlation between various geometric parameters can be established in this manner. By studying blade geometry of various kinds of axial turbomachine (compressors, gas turbines, hydraulic turbines and pumps), the author has found some regularities in their geometry which enabled the design of highly efficient blades. Regularities in the twisting of impeller blades of axial compressors working over a wide range of Mach numbers are represented in this work. Information is presented showing that analogous regularities exist also for axial hydraulic turbine and pump blades.


Author(s):  
Luke H. Cowell ◽  
Matthew P. Larkin

A catalytic combustion system for advanced industrial gas turbines is under long tern development employing recent advances in catalyst and materials technologies. Catalytic combustion is a proven means of burning fuel with single digit NOx emissions levels. However, this technology has yet to be considered for production in an industrial gas turbine for a number of reasons including: limited catalyst durability, demonstration of a system that can operate over all loads and ambient conditions, and market and cost factors. The catalytic combustion system will require extensive modifications to production gas turbines including fuel staging and variable geometry. The combustion system is composed of five elements: a preheat combustor, premixer, catalyst bed, part load injector and post-catalyst combustor. The preheat combustor operates in a lean premixed mode and is used to elevate catalyst inlet air and fuel to operating temperature. The premixer combines fuel and air into a uniform mixture before entering the catalyst. The catalyst bed initiates the fuel-air reactions, elevating the mixture temperature and partially oxidizing the fuel. The part load injector is a lean premixed combustor system that provides fuel and air to the post-catalyst combustor. The post-catalyst combustor is the volume downstream of the catalyst bed where the combustion reactions are completed. At part load conditions a conventional flame bums in this zone. Combustion testing is on-going in a subscale rig to optimize the system and define operating limits. Short duration rig testing has been completed to 9 atmospheres pressure with stable catalytic combustion and NOx emissions down to the 5 ppmv level. Testing was intended to prove-out design elements at representative full load engine conditions. Subscale combustion testing is planned to document performance at part-load conditions. Preliminary full-scale engine design studies are underway.


Author(s):  
Richard Jackson ◽  
Hui Tang ◽  
James Scobie ◽  
J. Michael Owen ◽  
Gary Lock

Abstract Buoyancy-induced flow occurs inside the rotating compressor cavities of gas turbines. These cavities are usually open at the inner radius, but in some industrial gas turbines, they are effectively closed. This paper presents measurements of the disc heat transfer and rotating flow structures in a closed cavity over a wide range of engine relevant conditions. These experimentally derived distributions of disc temperature and heat flux are the first of their kind to be published. The radial distribution of the non-dimensional disc temperature virtually collapsed onto a single curve over the full experimental range. There was a small, monotonic departure from this common curve with increasing Reynolds number; this was attributed to compressibility effects where the core temperature increases as the rotational speed increases. These results imply that, if compressibility effects are negligible, all rotating closed cavities should have a disc temperature distribution uniquely related to the geometry and disc material; this is of important practical use to the engine designer. Unsteady pressure sensors detected either three or four vortex pairs across the experimental range. The number of pairs changed with Grashof number, and the structures slipped relative to the rotating discs by less than 1% of the disc speed.


1982 ◽  
Vol 104 (2) ◽  
pp. 429-438 ◽  
Author(s):  
M. B. Cutrone ◽  
M. B. Hilt ◽  
A. Goyal ◽  
E. E. Ekstedt ◽  
J. Notardonato

The work described in this paper is part of the DOE/LeRC Advanced Conversion-Technology Project (ACT). The program is a multiple contract effort with funding provided by the Department of Energy, and technical program management provided by NASA LeRC. Combustion tests are in progress to evaluate the potential of seven advanced combustor concepts for achieving low NOx emissions for utility gas turbine engines without the use of water injection. Emphasis was on the development of the required combustor aerothermodynamic features for burning high nitrogen fuels. Testing was conducted over a wide range of operating conditions for a 12:1 pressure ratio heavy-duty gas turbine. Combustors were evaluated with distillate fuel, SRC-II coal-derived fuel, residual fuel, and blends. Test results indicate that low levels of NOx and fuel-bound nitrogen conversion can be achieved with rich-lean combustors for fuels with high fuel-bound nitrogen. In addition, ultra-low levels of NOx can be achieved with lean-lean combustors for fuels with low fuel-bound nitrogen.


Author(s):  
Frank Reiss ◽  
Sven-Hendrik Wiers ◽  
Ulrich Orth ◽  
Emil Aschenbruck ◽  
Martin Lauer ◽  
...  

This paper describes the development and test results of the low emission combustion system for the new industrial gas turbines in the 6–7 MW class from MAN Diesel & Turbo. The design of a robust combustion system and the achievement of very low emission targets were the most important design goals of the combustor development. During the design phase, the analysis of the combustor (i.e. burner design, air distribution, liner cooling design) was supported with different CFD tools. This advanced Dry Low Emission can combustion system (ACC) consists of 6 cans mounted externally on the gas turbine. The behavior and performance of a single can sector was tested over a wide load range and with different boundary conditions; first on an atmospheric test rig and later on a high pressure test rig with extensive instrumentation to ensure an efficient test campaign and accurate data. The atmospheric tests showed a very good performance for all combustor parts and promising results. The high pressure tests demonstrated very stable behavior at all operation modes and very low emissions to satisfy stringent environmental requirements. The whole operation concept of the combustion system was tested first on the single-can high pressure test bed and later on twin and single shaft gas turbines at MAN’s gas turbine test facility. During the engine tests, the can combustors demonstrated the expected combustion performance under real operation conditions. All emissions and performance targets were fully achieved. On the single shaft engine, the combustors were running with single digit ppm NOx levels between 50% and 100% load. The validation phase and further optimization of the gas turbines and the engine components are ongoing. The highlights of the development process and results of the combustor and engine tests will be presented and discussed within this paper.


Author(s):  
Jeffrey D. Willis ◽  
A. John Moran

Industrial gas turbines have universally had problems with combustion amplified pressure oscillations (combustion instability or noise) in premix lean burn combustors. Reference 1 issued by General Electric is a particularly good report. Under specific conditions a resonant frequency achieves sufficient amplitude to cause severe damage to the combustor. As the emissions are reduced to lower levels, by achieving better uniformity of fuel and air distribution and a larger percentage of the air is used in the combustion process, then these amplitudes have the potential to become greater especially at high pressure ratios. Small changes in either ambient conditions or fuel quality appear to cause noise amplitudes to become unacceptable.


Author(s):  
Douglas L. Straub ◽  
Kent H. Casleton ◽  
Robie E. Lewis ◽  
Todd G. Sidwell ◽  
Daniel J. Maloney ◽  
...  

This paper describes the evaluation of an alternative combustion approach to achieve low emissions for a wide range of fuel-types. This approach combines the potential advantages of a staged Rich-burn, Quick-mix, Lean-burn (RQL) combustor with the revolutionary Trapped Vortex Combustor (TVC) concept. Although RQL combustors have been proposed for low-BTU fuels, this paper considers the application of an RQL combustor for high-BTU natural gas applications. This paper will describe the RQL/TVC concept and experimental results conducted at 10 atmospheres (1013 kPa or 147 psia) and an inlet-air temperature of 644K (700°F). The results from a simple network reactor model using detailed kinetics are compared to the experimental observations. Neglecting mixing limitations, the simplified model suggests that NOx and CO performance below 10 parts-per-million could be achieved in an RQL approach. The CO levels predicted by the model are reasonably close to the experimental results over a wide range of operating conditions. The predicted NOx levels are reasonably close for some operating conditions, however, as the rich-stage equivalence ratio increases, the discrepancy between the experiment and the model increases. Mixing limitations are critical in any RQL combustor, and the mixing limitations for this RQL/TVC design are discussed.


Sign in / Sign up

Export Citation Format

Share Document