A Finite Element Model for Spherical Debris Denting in Heavily Loaded Contacts

2004 ◽  
Vol 126 (1) ◽  
pp. 71-80 ◽  
Author(s):  
Young Sup Kang ◽  
Farshid Sadeghi ◽  
Mike R. Hoeprich

The objective of this study is to develop models to investigate the effects of contaminants (debris denting process) in heavily loaded rolling and sliding contacts. A dynamic time dependent finite element model (FEM) was developed to determine the elastic-plastic deformation and contact force generated between the mating surfaces and a spherical debris as debris passes through the contact region. The FEA model was used to obtain the effects of various parameters such as debris sizes, material properties, friction coefficients, applied loads, and surface speeds on the elastic-plastic deformation and contact force of the system. The FEM was used to predict debris and mating surfaces deformations as a function of debris size, material properties, friction coefficient, applied load, and surface speed. Using the FEM, a parametric study demonstrated that material properties (i.e., modulus of elasticity, yield strength, ultimate strength and Poisson’s ratio) and friction coefficients play significant roles on the height and width of dents on the mating surfaces. For lower friction coefficients μd<0.3 the debris and mating surfaces slip more easily relative to one another and therefore the debris has lower aspect ratio. As friction coefficient is increased the debris and mating surfaces stick to one another and therefore the debris deforms less and has higher aspect ratio. The results indicate that the pressure generated between the debris and mating surfaces is high enough to plastically deform the debris and mating surfaces and cause a permanent dent on the surfaces and cause residual stresses around the dent. Based on the FEM results, a dry contact model (DCM) was developed to allow similar analyses as the FEM, however, in significantly shorter computational time.

Author(s):  
Ali Sepehri ◽  
Kambiz Farhang

Three dimensional elastic-plastic contact of two nominally flat rough surfaces is considered. Equations governing the shoulder-shoulder contact of asperities are derived based on the asperity-asperity constitutive relations from a finite element model of their elastic-plastic interaction. Shoulder-shoulder asperity contact yields a slanted contact force consisting of both tangential (parallel to mean plane) and normal components. Multiscale modeling of the elastic-plastic rough surface contact is presented in which asperity-level FE-based constitutive relations are statistically summed to obtain total force in the normal and tangential direction. The equations derived are in the form of integral functions and provide expectation of contact force components between two rough surfaces. An analytical fusion technique is developed to combine the piecewise asperity level constitutive relations. This is shown to yield upon statistical summation the cumulative effect resulting in the contact force between two rough surfaces with two components, one in the normal direction and a half-plane tangential component.


Author(s):  
Sean M. Finley ◽  
J. Harley Astin ◽  
Evan Joyce ◽  
Andrew T. Dailey ◽  
Douglas L. Brockmeyer ◽  
...  

OBJECTIVE The underlying biomechanical differences between the pediatric and adult cervical spine are incompletely understood. Computational spine modeling can address that knowledge gap. Using a computational method known as finite element modeling, the authors describe the creation and evaluation of a complete pediatric cervical spine model. METHODS Using a thin-slice CT scan of the cervical spine from a 5-year-old boy, a 3D model was created for finite element analysis. The material properties and boundary and loading conditions were created and model analysis performed using open-source software. Because the precise material properties of the pediatric cervical spine are not known, a published parametric approach of scaling adult properties by 50%, 25%, and 10% was used. Each scaled finite element model (FEM) underwent two types of simulations for pediatric cadaver testing (axial tension and cardinal ranges of motion [ROMs]) to assess axial stiffness, ROM, and facet joint force (FJF). The authors evaluated the axial stiffness and flexion-extension ROM predicted by the model using previously published experimental measurements obtained from pediatric cadaveric tissues. RESULTS In the axial tension simulation, the model with 50% adult ligamentous and annulus material properties predicted an axial stiffness of 49 N/mm, which corresponded with previously published data from similarly aged cadavers (46.1 ± 9.6 N/mm). In the flexion-extension simulation, the same 50% model predicted an ROM that was within the range of the similarly aged cohort of cadavers. The subaxial FJFs predicted by the model in extension, lateral bending, and axial rotation were in the range of 1–4 N and, as expected, tended to increase as the ligament and disc material properties decreased. CONCLUSIONS A pediatric cervical spine FEM was created that accurately predicts axial tension and flexion-extension ROM when ligamentous and annulus material properties are reduced to 50% of published adult properties. This model shows promise for use in surgical simulation procedures and as a normal comparison for disease-specific FEMs.


2009 ◽  
Vol 131 (2) ◽  
Author(s):  
Raja R. Katta ◽  
Andreas A. Polycarpou ◽  
Jorge V. Hanchi ◽  
Robert M. Crone

With the increased use of hard disk drives (HDDs) in mobile and consumer applications combined with the requirement of higher areal density, there is enhanced focus on reducing head disk spacing, and consequently there is higher susceptibility of slider/disk impact damage during HDD operation. To investigate this impact process, a dynamic elastic-plastic finite element model of a sphere (representing a slider corner) obliquely impacting a thin-film disk was created to study the effect of the slider corner radius and the impact velocity on critical contact parameters. To characterize the energy losses due to the operational shock impact damage, the coefficient of restitution for oblique elastic-plastic impact was studied using the finite element model. A modification to an existing physics-based elastic-plastic oblique impact coefficient of restitution model was proposed to accurately predict the energy losses for a rigid sphere impacting a half-space. The analytical model results compared favorably to the finite element results for the range from low impact angles (primarily normal impacts) to high impact angles (primarily tangential impacts).


Author(s):  
A. van Bael ◽  
P. van Houtte ◽  
E. Aernoudt ◽  
I. Pillinger ◽  
P. Hartley ◽  
...  

2020 ◽  
Vol 2020 ◽  
pp. 1-13 ◽  
Author(s):  
Qi Guo ◽  
Qing-wei Chen ◽  
Ying Xing ◽  
Ya-ning Xu ◽  
Yi Zhu

Prefabrication of composites beam reduces the construction time and makes them easily to be assembled, deconstructed, and partially repaired. The use of high-strength frictional bolt shear connectors can greatly enhance the sustainability of infrastructure. However, researches about the concrete-steel friction behavior are very limited. To provide a contribution to this area, 21 tests were conducted to measure the friction coefficient and slip stiffness with different concrete strength, steel strength, and surface treatment of steel. An effective finite element model was developed to investigate the ultimate bearing capacity and load-slip characteristics of bolt shear connection. The accuracy of the proposed finite element model is validated by the tests in this paper. The results demonstrate a positive correlation between concrete strength and friction coefficient and better performance of shot-blasted steel. It is also proved that high-strength frictional bolt has a 30% lower bearing capacity but better strength reserve and antiuplifting than the headed stud.


Author(s):  
X. G. Tan ◽  
R. Kannan ◽  
Andrzej J. Przekwas

Until today the modeling of human body biomechanics poses many great challenges because of the complex geometry and the substantial heterogeneity of human body. We developed a detailed human body finite element model in which the human body is represented realistically in both the geometry and the material properties. The model includes the detailed head (face, skull, brain, and spinal cord), the skeleton, and air cavities (including the lung). Hence it can be used to accurately acquire the stress wave propagation in the human body under various loading conditions. The blast loading on the human surface was generated from the simulated C4 blast explosions, via a novel combination of 1-D and 3-D numerical formulations. We used the explicit finite element solver in the multi-physics code CoBi for the human body biomechanics. This is capable of solving the resulting large system containing millions of unknowns in an extremely scalable fashion. The meshes generated for these simulations are of good quality. This enables us to employ relatively large time step sizes, without resorting to the artificial time scaling treatment. In order to study the human body dynamic response under the blast loading, we also developed an interface to apply the blast pressure loading on the external human body surface. These newly developed models were used to conduct parametric simulations to find out the brain biomechanical response when the blasts impact the human body. Under the same blast loading we also show the differences of brain response when having different material properties for the skeleton, the existence of other body parts such as torso.


Sign in / Sign up

Export Citation Format

Share Document