Determination of Bearing Loads Due To Wind in Solar Tracking Systems

2004 ◽  
Vol 126 (1) ◽  
pp. 668-670
Author(s):  
Anand M. Sharan

This paper deals with the calculation of the wind forces on the bearings of a solar tracking system. The forces involved are three dimensional-normal, and drag forces which act on the solar panel. These calculations are done in a rotating frame, and subsequently, they are transformed to a stationary frame. The effect of the weight forces of the solar panel is also included.

2018 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Philippe Dondon ◽  
Pascal Gauterie ◽  
Renaud Charlet

Nowadays power generation is one of the greatest challenges of humanity in the framework of Sustainable Development. For example, as it is globally accepted sun tracking systems allows improvement of solar panel power ratio. In order to illustrate this concept, this paper presents the design and a behaviour modelling of a two axis small scale system for future didactical applications. The principle of tracking is described. Mathematical description is done and a mixed SPICE modelling of the system, including geometrical, optical, electronic linear and non-linear aspects is built. Simulations results are analysed. Practical mechanical and electronic designs are detailed, before conclusion. This small scale solar tracking system is now installed in a eco-friendly small scale house model.


Author(s):  
A. H. Mohaimin ◽  
M. R. Uddin ◽  
A. Khalil

<p>Power output from a small solar panel can be affected by its power consumption when it consumes power from the solar panel. There has been a lack of proper research and experiment in the use of small solar panel with tracking systems. Its significance was detailed in this paper where the voltage output are compared with those which were externally powered. The solar trackers and a microcontroller have been designed and fabricated for this research. Due to the use of the tracking system (single axis and dual axis), the power consumption varies from one to another and its effect on the voltage output. Several experiments have been conducted and it was concluded that small solar panels are not efficient enough to utilize with tracking capabilities due to an increase in power consumption. The externally powered system was found to generate 18% more output compared to a selfsustaining system and that the increase in average power consumptions compared to a fixed panel were 31.7% and 82.5% for single-axis and dualaxis tracker respectively. A concrete evidence was made that utilizing solar tracking capabilities for low power rated solar panel is unfeasible.</p>


2020 ◽  
Vol 15 (4) ◽  
pp. 613-619
Author(s):  
Li Kong ◽  
Yunpeng Zhang ◽  
Zhijian Lin ◽  
Zhongzhu Qiu ◽  
Chunying Li ◽  
...  

Abstract The present work aimed to select the optimum solar tracking mode for parabolic trough concentrating collectors using numerical simulation. The current work involved: (1) the calculation of daily solar radiation on the Earth’s surface, (2) the comparison of annual direct solar radiation received under different tracking modes and (3) the determination of optimum tilt angle for the north-south tilt tracking mode. It was found that the order of solar radiation received in Shanghai under the available tracking modes was: dual-axis tracking &gt; north-south Earth’s axis tracking &gt; north-south tilt tracking (β = 15°) &gt; north-south tilt tracking (β = 45) &gt; north-south horizontal tracking &gt; east-west horizontal tracking. Single-axis solar tracking modes feature simple structures and low cost. This study also found that the solar radiation received under the north-south tilt tracking mode was higher than that of the north-south Earth’s axis tracking mode in 7 out of 12 months. Therefore, the north-south tilt tracking mode was studied separately to determine the corresponding optimum tilt angles in Haikou, Lhasa, Shanghai, Beijing and Hohhot, respectively, which were shown as follows: 18.81°, 27.29°, 28.67°, 36.21° and 37.97°.


Author(s):  
A Imthiyas ◽  
S. Prakash ◽  
N Vijay ◽  
A Alwin Abraham ◽  
B Ganesh Kumar

Author(s):  
Balaji K ◽  
Dharshan T R ◽  
Mahendran P ◽  
Priyadharsini R

The renewable energies, solar energy is the only energy gained its popularity and importance quickly. Through the solar tracking system, we can produce an abundant amount of energy which makes the solar panel’s workability much more efficient. Perpendicular proportionality of the solar panel with the sun rays is the reason lying behind its efficiency. Pecuniary, its installation charge is high provided cheaper options are also available. The main control circuit is based upon NodeMcu microcontroller. Programming of this device is done in the manner that the LDR sensor, in accordance with the detection of the sun rays, will provide direction to the DC Motor that in which way the solar panel is going to revolve. Through this, the solar panel is positioned in such a manner that the maximum amount of sun rays could be received. Though a hike in the efficiency of the solar panel had a handsome increase still perfection was a far-fetched goal for it. Below 40%, most of the panels still hover to operate. Consequently, peoples are compelled to purchase a number of panels in order to meet their energy demands or purchase single systems with large outputs. Availability of the solar cells types with higher efficiencies is on provided they are too costly to purchase. Ways to be accessed for increasing solar panel efficiencies are a plethora in number still one of the ways to be availed for accomplishing the said purpose while reducing costs, is tracking. Tracking helps in the wider projection of the panel to the Sun with increased power output. It could be dual or single axis tracker


2021 ◽  
Vol 2107 (1) ◽  
pp. 012024
Author(s):  
Lim Xin You ◽  
Nordiana Shariffudin ◽  
Mohd Zamri Hasan

Abstract Nowadays, solar energy’s popularity is growing consistently every year, along with the growth of amazing solar technologies, which is considered to be one of the most popular. Non-renewable energy like petrol and gasoline is being replaced with solar energy, which is renewable energy. The main objective of this project is to design and simulate a robot solar system. The robot is developed using Arduino Mega 2560 as the main brain of the system. This system is equipped with a solar tracking system to track the movement of the sun and LDR is used to detect the presence of sunlight. The solar tracker is used to get the maximum efficiency of solar energy and reduce power losses. In addition, the solar tracker can rotate from 0° - 180°, which is the best angle for the solar panel to reach the sunlight. This robot will be attached to the sprinkler system to perform the watering process. This robot is developed for use in the agriculture field to reduce the manpower and cost of the watering process. Three analyses will be conducted in this project such as solar panel analysis, Wi-Fi connectivity analysis and sprinkler system analysis. The result shows the solar panel will gain the highest intensity of the sunlight at 12.00 pm and a sunny day compared to the other time and a cloudy day. The maximum range of Wi-Fi connectivity and the water pump, time used to finish the watering process and watering area will be discussed.


2018 ◽  
Vol 7 (3.18) ◽  
pp. 11
Author(s):  
Musse Mohamud Ahmed ◽  
Mohammad Kamrul Hasan ◽  
Mohammad Shafiq

The main purpose of this paper is to present a novel idea that is based on design and development of an automatic solar tracker system that tracks the Sun's energy for maximum energy output achievement. In this paper, a novel automatic solar tracking system has been developed for small-scale solar energy system. The hardware part and programming part have been concurrently developed in order for the solar tracking system to be possible for it to operate accurately. Arduino Uno R3, Sensor Shield V4 Digital Analog Module, LDR (Light Dependent Resistor), MPU-6050 6DOF 3 Axis Gyroscope has been used for tracking the angular sun movement as shown in Fig. 1. Accelerometer, High-Efficiency Solar Panel, and Tower Pro MG90S Servo Motor have been used for the hardware part. High-level programming language has been embedded in the hardware to operate the tracking system effectively. The tracking system has shown significant improvement of energy delivery to solar panel comparing to the conventional method. All the results will be shown in the full paper. There are three contributions the research presented in this paper which are, i.e. perfect tracking system, the comparison between the static and tracking system and the development of Gyroscope angular movement system which tracks the angular movement of the sun along with another tracking system.  


2015 ◽  
Vol 793 ◽  
pp. 353-357
Author(s):  
F.S. Abdullah ◽  
H.M. Nuhafiz ◽  
O. Mardianaliza ◽  
A. Yusof ◽  
Noor Anida

Solar tracker is a device that detects the movement of the sun. Solar tracker receive maximum sun ray in order to produce the maximum power supply by the photovoltaic (PV) panels system. It also depends on the environment factor such as solar irradiation and temperature of the panels. This paper presents the development of the automatic solar tracking system, the construction of the sensor circuit, programming of the control system and also its performance analysis. This automatic solar tracking system is designed with an electronic circuit control using PIC that can trigger the dc motors when the LDR sensors detect sunlight. DC motor will move vertical and 360 ̊ horizontal to increase efficiency of sunlight to the solar panel. Solar panel for the project gets power supply from the battery. The battery will be charged using power from the solar panel.


Sign in / Sign up

Export Citation Format

Share Document