scholarly journals Self-sustaining and externally-powered fixed, single, and dual-axis solar trackers

Author(s):  
A. H. Mohaimin ◽  
M. R. Uddin ◽  
A. Khalil

<p>Power output from a small solar panel can be affected by its power consumption when it consumes power from the solar panel. There has been a lack of proper research and experiment in the use of small solar panel with tracking systems. Its significance was detailed in this paper where the voltage output are compared with those which were externally powered. The solar trackers and a microcontroller have been designed and fabricated for this research. Due to the use of the tracking system (single axis and dual axis), the power consumption varies from one to another and its effect on the voltage output. Several experiments have been conducted and it was concluded that small solar panels are not efficient enough to utilize with tracking capabilities due to an increase in power consumption. The externally powered system was found to generate 18% more output compared to a selfsustaining system and that the increase in average power consumptions compared to a fixed panel were 31.7% and 82.5% for single-axis and dualaxis tracker respectively. A concrete evidence was made that utilizing solar tracking capabilities for low power rated solar panel is unfeasible.</p>

Author(s):  
Belly Yan Dewantara ◽  
Daeng Rahmatullah

<em>Nowadays solar panel is widely used as an independent power plant, it can be seen the many applications of solar panels on electrical equipment, such as traffic light, general lighting, etc. The energi produced by solar panel is affected by the absorbed sunlight. generally solar panels are implemented statically, this causes the absorption of solar energi is not maximal in the morning and afternoon. To maximize the absorption of sunlight, solar panels must always be facing perpendicular to the position of the sun. Automatic solar tracking system is needed to solve these problems, It is makes solar panels always perpendicular to the sun and can follow the movement of the sun, so that the absorption of solar energi is more leverage. The results of the test show the use of automatic tracking system to get the maximum absorption of solar energi indicated by a more stable voltage output,and the power generated is greater than using a static solar panel. Automatic Sun Tracking System (ASTS) increase the average power up to ± 39-41 watt / day with the efficiency of ASTS 81.66% on PV panel 50 WP.</em>


Author(s):  
Balaji K ◽  
Dharshan T R ◽  
Mahendran P ◽  
Priyadharsini R

The renewable energies, solar energy is the only energy gained its popularity and importance quickly. Through the solar tracking system, we can produce an abundant amount of energy which makes the solar panel’s workability much more efficient. Perpendicular proportionality of the solar panel with the sun rays is the reason lying behind its efficiency. Pecuniary, its installation charge is high provided cheaper options are also available. The main control circuit is based upon NodeMcu microcontroller. Programming of this device is done in the manner that the LDR sensor, in accordance with the detection of the sun rays, will provide direction to the DC Motor that in which way the solar panel is going to revolve. Through this, the solar panel is positioned in such a manner that the maximum amount of sun rays could be received. Though a hike in the efficiency of the solar panel had a handsome increase still perfection was a far-fetched goal for it. Below 40%, most of the panels still hover to operate. Consequently, peoples are compelled to purchase a number of panels in order to meet their energy demands or purchase single systems with large outputs. Availability of the solar cells types with higher efficiencies is on provided they are too costly to purchase. Ways to be accessed for increasing solar panel efficiencies are a plethora in number still one of the ways to be availed for accomplishing the said purpose while reducing costs, is tracking. Tracking helps in the wider projection of the panel to the Sun with increased power output. It could be dual or single axis tracker


2018 ◽  
Vol 210 ◽  
pp. 02001
Author(s):  
Philippe Dondon ◽  
Pascal Gauterie ◽  
Renaud Charlet

Nowadays power generation is one of the greatest challenges of humanity in the framework of Sustainable Development. For example, as it is globally accepted sun tracking systems allows improvement of solar panel power ratio. In order to illustrate this concept, this paper presents the design and a behaviour modelling of a two axis small scale system for future didactical applications. The principle of tracking is described. Mathematical description is done and a mixed SPICE modelling of the system, including geometrical, optical, electronic linear and non-linear aspects is built. Simulations results are analysed. Practical mechanical and electronic designs are detailed, before conclusion. This small scale solar tracking system is now installed in a eco-friendly small scale house model.


INSIST ◽  
2019 ◽  
Vol 2 (2) ◽  
pp. 81
Author(s):  
Adhy Prayitno ◽  
Muhammad Irvan ◽  
Sigit Nurharsanto ◽  
Wahyu Fajar Yantoa

Observations and measurements have been conducted towards a solar panel electric power output that is utilized by a solar tracking system. The electrical power output depends on the position of the sun and time and the direction of the panel surface against the angle of the incident light. For power optimization, the solar panel surface should always be directed perpendicular to the direction of the sunlight falling to the surface of the panel. The application of the solar tracking system controlled by a micro controller gives the expected results. The electrical power output of a static solar panel mounted on a fixed position becomes the benchmark of the output electric power value in this study. The measurement results of the electric power output of the solar panel with sun tracking system shows a significant increase in sunny weather conditions.The average increase of that is about 57.3%.Keywords: LDR, micro controller, optimal power output, performance improvment, sun tracking,


Author(s):  
Prof. Shashank Pujari ◽  
Prangyadarshini Behera ◽  
Devendrakumar Yadav

The paper outlines an application of smart solar “photovoltaic” power generation. Solar panels are typically in fixed position. They're limited in their energy-generating ability because they cannot consistently take full advantage of maximum sunlight. For more effective solar energy system, the solar panel should be able to align with sunlight as it changes during a given day. The present paper examines the design advantages of creating an intelligent solar tracking system like a helianthus flower using microcontroller based embedded system.


Author(s):  
Md. Taslim Mahmud Bhuyain ◽  
Robin Kuri ◽  
Nayeem Al-Tamzid Bhuiyan ◽  
Md Sahadat Hossain Sagor ◽  
Riazul Haidar

With solar tracking, it will become possible to generate more energy since the solar panel can maintain a perpendicular profile to the rays of the sun. Even though the initial cost of setting up the tracking system is considerably high, there are cheaper options that have been proposed over time. This research discuss the design and construction of a prototype for a solar tracking system that has a single axis of freedom. Light Dependent Resistors (LDRs) are used for sunlight detection. The control circuit is based on an ATMega328P microcontroller. It was programmed to detect sunlight via the LDRs before actuating the servo to position the solar panel. The solar panel is positioned where it is able to receive maximum light. As compared to other motors, the servo motors are able to maintain their torque at high speed. They are also more efficient with efficiencies in the range of 80-90%. Servos can supply roughly twice their rated torque for short periods. Through tracking, there will be increased exposure of the panel to the sun, making it have increased power output. The trackers can either be dual or single axis trackers. As a single tracking system is cheaper, less complex, and still achieves the required efficiency, so it was used.


2018 ◽  
Vol 7 (2) ◽  
pp. 913
Author(s):  
Muhammed Sabri Salim

During the daily sun cycle, the falling rays are of varying intensity on the solar panel reducing the energy generated from it. This is evident in the energy production of solar panels that are installed on the slanted surfaces of homes scattered in the rain regions of the world. In this research, the reasons for the low efficiency of energy production of solar panels that are installed on the A-frame designs of homes were studied and solved. The design of an integrated tracking system is developed based on fuzzy logic control using an open source code that can be easily modified. The performance and characteristics of the solar tracking device are tested experimentally to test its suitability for use with slanted roofs homes. The integrated solar localization system offers economical and efficient solar monitoring, as well as open source programming, which allows for future improvements and changes. In addition, the single-axis fuzzy tracking system was good for moving both panels in less than five seconds towards the sun. The adoption of the proposed design provides an extremely accurate tracking system and therefore, maximizes the potential of power generated by the solar panel since it will meet the sun's rays from dawn to dusk. The economic effect of the proposed design is to approximately double the value of electrical power received compared to the fixed design.  


Author(s):  
Smita Dinker

Solar energy is a clean, easily accessible and abundantly available alternative energy source in nature. Getting solar energy from nature is very beneficial for power generation. Using a fixed Photovoltaic panels extract maximum energy only during 12 noon to 2 PM in Nigeria which results in less energy efficiency. Therefore, the need to improve the energy efficiency of PV solar panel through building a solar tracking system cannot be over-emphasized. Photovoltaic panels must be perpendicular with the sun in order to get maximum energy. The methodology employed in this work includes the implementation of an Arduino based solar tracking system. Light Dependent Resistors (LDRs) are used to sense the intensity of sunlight and hence the PV solar panel is adjusted accordingly to track maximum energy. The mechanism uses servo motor to control the movement of the solar panel. The microcontroller is used to control the servo motor based on signals received from the LDRs. The result of this work has clearly shown that the tracking solar panel produces more energy compared to a fixed panel.


2004 ◽  
Vol 126 (1) ◽  
pp. 668-670
Author(s):  
Anand M. Sharan

This paper deals with the calculation of the wind forces on the bearings of a solar tracking system. The forces involved are three dimensional-normal, and drag forces which act on the solar panel. These calculations are done in a rotating frame, and subsequently, they are transformed to a stationary frame. The effect of the weight forces of the solar panel is also included.


The Solar power is the future of mankind because is availability on earth and with very less carbon footprint. The solar power in upcoming years will dominant the power generation industry and will improve the climatic conditions of planet earth. The solar panel efficiency is improving as technology is improving. There are many techniques are used for improving the power output from solar panel module like temperature reduction and solar tracking. In solar tracking technique the position of sun is tracked by using different techniques. In this paper we will discuss about the Camera based solar tracking system


Sign in / Sign up

Export Citation Format

Share Document