Active Flow Control Using Steady Blowing for a Low-Pressure Turbine Cascade

2004 ◽  
Vol 126 (4) ◽  
pp. 560-569 ◽  
Author(s):  
Brian R. McAuliffe ◽  
Steen A. Sjolander

The paper presents mid-span measurements for a turbine cascade with active flow control. Steady blowing through an inclined plane wall jet has been used to control the separation characteristics of a high-lift low-pressure turbine airfoil at low Reynolds numbers. Measurements were made at design incidence for blowing ratios from approximately 0.25 to 2.0 (ratio of jet-to-local freestream velocity), for Reynolds numbers of 25,000 and 50,000 (based on axial chord and inlet velocity), and for freestream turbulence intensities of 0.4% and 4%. Detailed flow field measurements were made downstream of the cascade using a three-hole pressure probe, static pressure distributions were measured on the airfoil suction surface, and hot-wire measurements were made to characterize the interaction between the wall jet and boundary layer. The primary focus of the study is on the low-Reynolds number and low-freestream turbulence intensity cases, where the baseline airfoil stalls and high profile losses result. For low freestream turbulence (0.4%), the examined method of flow control was effective at preventing stall and reducing the profile losses. At a Reynolds number of 25,000, a blowing ratio greater than 1.0 was required to suppress stall. At a Reynolds number of 50,000, a closed separation bubble formed at a very low blowing ratio (0.25) resulting in a significant reduction in the profile loss. For high freestream turbulence intensity (4%), where the baseline airfoil has a closed separation bubble and low profile losses, blowing ratios below 1.0 resulted in a larger separation bubble and higher losses. The mechanism by which the wall jet affects the separation characteristics of the airfoil is examined through hot-wire traverse measurements in the vicinity of the slot.

Author(s):  
B. R. McAuliffe ◽  
S. A. Sjolander

The paper presents mid-span measurements for a turbine cascade with active flow control. Steady blowing through an inclined plane wall jet has been used to control the separation characteristics of a high-lift low-pressure turbine airfoil at low Reynolds numbers. Measurements were made at design incidence for blowing ratios from approximately 0.25 to 2.0 (ratio of jet-to-local freestream velocity), for Reynolds numbers of 25000 and 50000 (based on axial chord and inlet velocity), and for freestream turbulence intensities of 0.4% and 4%. Detailed flow field measurements were made downstream of the cascade using a three-hole pressure probe, static pressure distributions were measured on the airfoil suction surface, and hot-wire measurements were made to characterize the interaction between the wall jet and boundary layer. The primary focus of the study is on the low-Reynolds number and low-freestream turbulence intensity cases, where the baseline airfoil stalls and high profile losses result. For low freestream turbulence (0.4%), the examined method of flow control was effective at preventing stall and reducing the profile losses. At a Reynolds number of 25000, a blowing ratio greater than 1.0 was required to suppress stall. At a Reynolds number of 50000, a closed separation bubble formed at a very low blowing ratio (0.25) resulting in a significant reduction in the profile loss. For high freestream turbulence intensity (4%), where the baseline airfoil has a closed separation bubble and low profile losses, blowing ratios below 1.0 resulted in a larger separation bubble and higher losses. The mechanism by which the wall jet affects the separation characteristics of the airfoil is examined through hot-wire traverse measurements in the vicinity of the slot.


2004 ◽  
Vol 128 (2) ◽  
pp. 251-260 ◽  
Author(s):  
Douglas G. Bohl ◽  
Ralph J. Volino

The effectiveness of three-dimensional passive devices for flow control on low pressure turbine airfoils was investigated experimentally. A row of small cylinders was placed at the pressure minimum on the suction side of a typical airfoil. Cases with Reynolds numbers ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) were considered under low freestream turbulence conditions. Streamwise pressure profiles and velocity profiles near the trailing edge were documented. Without flow control a separation bubble was present, and at the lower Reynolds numbers the bubble did not close. Cylinders with two different heights and a wide range of spanwise spacings were considered. Reattachment moved upstream as the cylinder height was increased or the spacing was decreased. If the spanwise spacing was sufficiently small, the flow at the trailing edge was essentially uniform across the span. The cylinder size and spacing could be optimized to minimize losses at a given Reynolds number, but cylinders optimized for low Reynolds number conditions caused increased losses at high Reynolds numbers. The effectiveness of two-dimensional bars had been studied previously under the same flow conditions. The cylinders were not as effective for maintaining low losses over a range of Reynolds numbers as the bars.


Author(s):  
Douglas G. Bohl ◽  
Ralph J. Volino

The effectiveness of three dimensional passive devices for flow control on low pressure turbine airfoils was investigated experimentally. A row of small cylinders was placed at the pressure minimum on the suction side of a typical airfoil. Cases with Reynolds numbers ranging from 25,000 to 300,000 (based on suction surface length and exit velocity) were considered under low freestream turbulence conditions. Streamwise pressure profiles and velocity profiles near the trailing edge were documented. Without flow control a separation bubble was present, and at the lower Reynolds numbers the bubble did not close. Cylinders with two different heights and a wide range of spanwise spacings were considered. Reattachment moved upstream as the cylinder height was increased or the spacing was decreased. If the spanwise spacing was sufficiently small, the flow at the trailing edge was essentially uniform across the span. The cylinder size and spacing could be optimized to minimize losses at a given Reynolds number, but cylinders optimized for low Reynolds number conditions caused increased losses at high Reynolds numbers. The effectiveness of two-dimensional bars had been studied previously under the same flow conditions. The cylinders were not as effective for maintaining low losses over a range of Reynolds numbers as the bars.


1999 ◽  
Vol 122 (2) ◽  
pp. 431-433 ◽  
Author(s):  
C. G. Murawski ◽  
K. Vafai

An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. Flow Reynolds numbers, based on exit velocity and suction length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number, resulted in shrinkage of the separation region on the suction surface. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. It is shown that width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. [S0098-2202(00)00202-9]


Author(s):  
Ralph J. Volino ◽  
Olga Kartuzova ◽  
Mounir B. Ibrahim

Boundary layer separation, transition and reattachment have been studied on a very high lift, low-pressure turbine airfoil. Experiments were done under high (4%) freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Velocity profiles were acquired in the suction side boundary layer at several streamwise locations using hot-wire anemometry. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) ranging from 25,000 to 300,000. At the lowest Reynolds number the boundary layer separated and did not reattach, in spite of transition in the separated shear layer. At higher Reynolds numbers the boundary layer did reattach, and the separation bubble became smaller as Re increased. High freestream turbulence increased the thickness of the separated shear layer, resulting in a thinner separation bubble. This effect resulted in reattachment at intermediate Reynolds numbers, which was not observed at the same Re under low freestream turbulence conditions. Numerical simulations were performed using an unsteady Reynolds averaged Navier-Stokes (URANS) code with both a shear stress transport k-ω model and a 4 equation shear stress transport Transition model. Both models correctly predicted separation and reattachment (if it occurred) at all Reynolds numbers. The Transition model generally provided better quantitative results, correctly predicting velocities, pressure, and separation and transition locations. The model also correctly predicted the difference between high and low freestream turbulence cases.


Author(s):  
Christopher G. Murawski ◽  
Rolf Sondergaard ◽  
Richard B. Rivir ◽  
Kambiz Vafai ◽  
Terrence W. Simon ◽  
...  

Low pressure turbines in aircraft experience large changes in flow Reynolds number as the gas turbine engine operates from takeoff to high altitude cruise. Low pressure turbine blades are also subject to regions of strong acceleration and diffusion. These changes in Reynolds number, strong acceleration, as well as elevated levels of turbulence can result in unsteady separation and transition zones on the surface of the blade. An experimental study was conducted in a two-dimensional linear cascade, focusing on the suction surface of a low pressure turbine blade. The intent was to assess the effects of changes in Reynolds number, and freestream turbulence intensity. Flow Reynolds numbers, based on exit velocity and suction surface length, have been varied from 50,000 to 300,000. The freestream turbulence intensity was varied from 1.1 to 8.1 percent. Separation was observed at all test Reynolds numbers. Increasing the flow Reynolds number, without changing freestream turbulence, resulted in a slightly rearward movement of the onset of separation and shrinkage of the separation zone. Increasing the freestream turbulence intensity, without changing Reynolds number resulted in a shrinkage of the separation region on the suction surface. Increasing both flow Reynolds numbers and freestream turbulence intensity compounded these effects such that at a Reynolds number of 300,000 and a freestream turbulence intensity of 8.1%, the separation zone was almost nonexistent. The influences on the blade’s wake from altering freestream turbulence and Reynolds number are also documented. The width of the wake and velocity defect rise with a decrease in either turbulence level or chord Reynolds number. Numerical simulations were performed in support of experimental results. The numerical results compare well qualitatively with the low freestream turbulence experimental cases.


2012 ◽  
Vol 135 (1) ◽  
Author(s):  
Ali Mahallati ◽  
Brian R. McAuliffe ◽  
Steen A. Sjolander ◽  
Thomas J. Praisner

This two-part paper presents a detailed experimental investigation of the laminar separation and transition phenomena on the suction surface of a high-lift low-pressure turbine airfoil, PakB. The first part describes the influence of Reynolds number, freestream turbulence intensity and turbulence length scale on the PakB airfoil under steady inflow conditions. The present measurements are distinctive in that a closely-spaced array of hot-film sensors has allowed a very detailed examination of the suction surface boundary layer behavior. In addition, this paper presents a technique for interpreting the transition process in steady, and periodically unsteady, separated flows based on dynamic and statistical properties of the hot-film measurements. Measurements were made in a low-speed linear cascade facility at Reynolds numbers between 25,000 and 150,000 at three freestream turbulence intensity levels of 0.4%, 2%, and 4%. Two separate grids were used to generate turbulence intensity of 4% with integral length scales of about 10% and 40% of the airfoil axial chord length. While the higher levels of turbulence intensity promoted earlier transition and a shorter separation bubble, turbulence length scale did not have a noticeable effect on the transition process. The size of the suction side separation bubble increased with decreasing Reynolds number, and under low freestream turbulence levels the bubble failed to reattach at low Reynolds numbers. As expected, the losses increased with the length of the separation bubble, and increased significantly when the bubble failed to reattach.


Author(s):  
Mounir Ibrahim ◽  
Olga Kartuzova ◽  
Ralph J. Volino

Boundary layer separation, transition and reattachment have been studied on a new, very high lift, low-pressure turbine airfoil. Experiments were done under low freestream turbulence conditions on a linear cascade in a low speed wind tunnel. Pressure surveys on the airfoil surface and downstream total pressure loss surveys were documented. Velocity profiles were acquired in the suction side boundary layer at several streamwise locations using hot-wire anemometry. Cases were considered at Reynolds numbers (based on the suction surface length and the nominal exit velocity from the cascade) ranging from 25,000 to 330,000. In all cases the boundary layer separated, but at high Reynolds number the separation bubble remained very thin and quickly reattached after transition to turbulence. In the low Reynolds number cases, the boundary layer separated and did not reattach, even when transition occurred. Three different CFD URANS (unsteady Reynolds averaged Navier-Stokes) models were utilized in this study (using Fluent CFD Code), the k-ω shear stress transport model, the ν2-fk-ε model, and the 4 equation Transition model of Menter. At Re = 25,000, the Transition model seems to perform the best. At Re = 100,000 the Transition model seems to perform the best also, although it under-predicts the pressure coefficient downstream of the suction peak. At Re = 300,000 all models perform very similar with each other. The Transition model showed a small bump in the pressure coefficient downstream from the suction peak indicating the presence of a small bubble at that location.


Author(s):  
Ali Mahallati ◽  
Brian R. McAuliffe ◽  
Steen A. Sjolander ◽  
Thomas J. Praisner

This two-part paper presents a detailed experimental investigation of the laminar separation and transition phenomena on the suction surface of a high-lift low-pressure (LP) turbine airfoil, PakB. The first part describes the influence of Reynolds number, freestream turbulence intensity and turbulence length scale on the PakB airfoil under steady inflow conditions. The present measurements are distinctive in that a closely-spaced array of hot-film sensors has allowed a very detailed examination to be made of both the steady and unsteady behaviour of the suction surface boundary layer. In addition, this paper presents a technique for interpreting the transition process in steady, and periodically unsteady, separated flows based on dynamic and statistical properties of the hot-film measurements. Measurements were made at Reynolds number varying from 25,000 to 150,000 and for freestream turbulence intensities of 0.4%, 2% and 4%. Two separate grids were used to generate turbulence intensity of 4% with integral length scales of about 10% and 40% of the airfoil axial chord length. The first is comparable with the turbulence length scales expected in the engine and the second is considerably larger. While the higher levels of freestream turbulence intensity promoted earlier transition and a shorter separation bubble, the varying turbulence length scale did not have a noticeable effect on the transition process. The size of the separation bubble increased with decreasing Reynolds number, and under low freestream turbulence levels the bubble failed to reattach at low Reynolds numbers. As expected, the losses increased with the length of the separation bubble on the suction side of the airfoil, and increased significantly when the bubble failed to reattach.


Author(s):  
Sertac Cadirci ◽  
Hasan Gunes

An oscillatory, zero-net-mass flux actuator system, Jet and Vortex Actuator (JaVA), is implemented on the step wall of a backward facing step. JaVA is shown previously both experimentally and numerically that it can energize the boundary layer by creating jets or vortices thus it may delay flow separation when used properly. The main part of JaVA is a rectangular cavity with a moving actuator plate. The actuator plate is mounted asymmetrically inside the cavity of the JaVA box, such that there are one narrow and one wide gap between the plate and the box. The main governing parameters are the actuator plate’s width (b), the amplitude (a) and the operating frequency (f). The main target of the control with active jets on the step wall is to influence directly the main recirculation zone, thus as the actuator plate or the step’s vertical wall moves periodically in horizontal direction, a jet emerges into the recirculation zone. Non-dimensional numbers such as the scaled amplitude (Sa = 2πa/b) and the jet Reynolds number (ReJ = 4abf/ν) as well as the maximum cross flow velocity characterize the JaVA-induced flow types and effects on the recirculation zone. One period consists of one blowing and one suction phase into the recirculation zone. The actuator plate has a sinusoidal motion determined by the amplitude and the operating frequency. Time-averaged flow fields and boundary layer profiles for actuated and not actuated cases at various operating frequencies indicate the effect of active flow control. The control effectiveness is given by the ratio of the jet Reynolds number to the Reynolds number of the incoming flow (r = ReJ/Re). A transient finite-volume-based laminar, incompressible Navier-Stokes solver (Fluent) has been used to study the flow fields generated by JaVA. The computational domain consists of a moving zone along the channel and the motion of the actuator plate is generated by a moving grid imposing appropriate boundary conditions with User-Defined-Functions (UDF). Numerical simulations reveal the JaVA-boundary layer interaction in the narrow channel for various governing parameters such as frequencies (jet Reynolds numbers) and channel flow velocities (Reynolds numbers, Re = 200, 400 and 800). The proposed control method based on suction and blowing with an oscillating backward facing step (OsBFS) seems to be effective in shortening the recirculation zone length and delaying the flow separation downstream of the backward facing step.


Sign in / Sign up

Export Citation Format

Share Document