Unsteady Aerodynamics of an Aeroengine Double Swirler Lean Premixing Prevaporizing Burner

2004 ◽  
Vol 128 (1) ◽  
pp. 29-39 ◽  
Author(s):  
Edward Canepa ◽  
Pasquale Di Martino ◽  
Piergiorgio Formosa ◽  
Marina Ubaldi ◽  
Pietro Zunino

Lean premixing prevaporizing (LPP) burners represent a promising solution for low-emission combustion in aeroengines. Since lean premixed combustion suffers from pressure and heat release fluctuations that can be triggered by unsteady large-scale flow structures, a deep knowledge of flow structures formation mechanisms in complex swirling flows is a necessary step in suppressing combustion instabilities. The present paper describes a detailed investigation of the unsteady aerodynamics of a large-scale model of a double swirler aeroengine LPP burner at isothermal conditions. A three-dimensional (3D) laser Doppler velocimeter and an ensemble-averaging technique have been employed to obtain a detailed time-resolved description of the periodically perturbed flow field at the mixing duct exit and associated Reynolds stress and vorticity distributions. Results show a swirling annular jet with an extended region of reverse flow near to the axis. The flow is dominated by a strong periodic perturbation, which occurs in all the three components of velocity. Radial velocity fluctuations cause important periodic displacement of the jet and the inner separated region in the meridional plane. The flow, as expected, is highly turbulent. The periodic stress components have the same order of magnitude of the Reynolds stress components. As a consequence the flow-mixing process is highly enhanced. Turbulence acts on a large spectrum of fluctuation frequencies, whereas the large-scale motion influences the whole flow field in an ordered way that can be dangerous for stability in reactive conditions.

Author(s):  
Edward Canepa ◽  
Pasquale Di Martino ◽  
Piergiorgio Formosa ◽  
Marina Ubaldi ◽  
Pietro Zunino

Lean premixing prevaporizing burners represent a promising solution for low-emission combustion in aeroengines. Since lean premixed combustion suffers from pressure and heat release fluctuations that can be triggered by unsteady large-scale flow structures, a deep knowledge of flow structures formation mechanisms in complex swirling flows is a necessary step in suppressing combustion instabilities. The present paper describes a detailed investigation of the unsteady aerodynamics of a large scale model of a double swirler aero-engine LPP burner at isothermal conditions. A 3-D laser Doppler velocimeter and an ensemble averaging technique have been employed to obtain a detailed time-resolved description of the periodically perturbed flow field at the mixing duct exit and associated Reynolds stress and vorticity distributions. Results show a swirling annular jet with an extended region of reverse flow near to the axis. The flow is dominated by a strong periodic perturbation which occurs in all the three components of velocity. Radial velocity fluctuations cause important periodic displacement of the jet and the inner separated region in the meridional plane. The flow, as expected, is highly turbulent. The periodic stress components have the same order of magnitude of the Reynolds stress components. As a consequence the flow mixing process is highly enhanced. While turbulence acts on a large spectrum of fluctuation frequencies, the large scale motion influences the whole flow field in an ordered way that can be dangerous for stability in reactive conditions.


Author(s):  
Yixiang Liao ◽  
Tian Ma

AbstractBubbly flow still represents a challenge for large-scale numerical simulation. Among many others, the understanding and modelling of bubble-induced turbulence (BIT) are far from being satisfactory even though continuous efforts have been made. In particular, the buoyancy of the bubbles generally introduces turbulence anisotropy in the flow, which cannot be captured by the standard eddy viscosity models with specific source terms representing BIT. Recently, on the basis of bubble-resolving direct numerical simulation data, a new Reynolds-stress model considering BIT was developed by Ma et al. (J Fluid Mech, 883: A9 (2020)) within the Euler—Euler framework. The objective of the present work is to assess this model and compare its performance with other standard Reynolds-stress models using a systematic test strategy. We select the experimental data in the BIT-dominated range and find that the new model leads to major improvements in the prediction of full Reynolds-stress components.


1997 ◽  
Vol 119 (3) ◽  
pp. 605-611 ◽  
Author(s):  
P. D. Smout ◽  
P. C. Ivey

An experimental study of wedge probe wall proximity effects is described in Part 1 of this paper. Actual size and large-scale model probes were tested to understand the mechanisms responsible for this effect, by which free-stream pressure near the outer wall of a turbomachine may be overindicated by up to 20 percent dynamic head. CFD calculations of the flow over two-dimensional wedge shapes and a three-dimensional wedge probe were made in support of the experiments, and are reported in this paper. Key flow structures in the probe wake were identified that control the pressures indicated by the probe in a given environment. It is shown that probe aerodynamic characteristics will change if the wake flow structures are modified, for example by traversing close to the wall, or by calibrating the probe in an open jet rather than in a closed section wind tunnel. A simple analytical model of the probe local flows was derived from the CFD results. It is shown by comparison with experiment that this model captures the dominant flow features.


Author(s):  
Peter D. Smout ◽  
Paul C. Ivey

An experimental study of wedge probe wall proximity effects is described in Part 1 of this paper. Actual size and large scale model probes were tested to understand the mechanisms responsible for this effect, by which free stream pressure near the outer wall of a turbomachine may be over indicated by upto 20% dynamic head. CFD calculations of the flow over two-dimensional wedge shapes and a three-dimensional wedge probe were made in support of the experiments, and are reported in this paper. Key flow structures in the probe wake were identified which control the pressures indicated by the probe in a given environment. It is shown that probe aerodynamic characteristics will change if the wake flow structures are modified, for example by traversing close to the wall, or by calibrating the probe in an open jet rather than in a closed section wind tunnel. A simple analytical model of the probe local flows was derived from the CFD results. It is shown by comparison with experiment that this model captures the dominant flow features.


Author(s):  
Yuki Kajikawa ◽  
Masamitsu Kuroiwa ◽  
Naohiro Otani

In this paper, a three-dimensional (3D) tsunami flow model was proposed in order to predict a 3D flow field around a harbor accurately when tsunami strikes. In the proposed numerical model, the Cartesian coordinate system was adopted, and the Fractional Area/Volume Obstacle Representation (FAVOR) method, which has the ability to impose boundary conditions smoothly at complex boundaries, was introduced into the governing equations in consideration of applying the estimation to actual harbors with complex shape in the future. Moreover, the fifth-order Weighted Essentially Non- Oscillatory (WENO) scheme, which is a technique for achieving high accuracy even if the calculation mesh is coarse, was applied to discretization of the convection terms of the governing equations. In order to verify the validity of the model, it was applied to a large-scale laboratory experiment with a scale model of harbor. Comparisons between the simulated and experimental results showed that the model was able to reproduce the time variation of the flow field with sufficient accuracy. Moreover, the simulated results showed that a complex 3D flow field with some vertical vortex flows was generated around a harbor when tsunami struck.


Author(s):  
Lamyaa A. El-Gabry ◽  
Douglas R. Thurman ◽  
Philip E. Poinsatte ◽  
James D. Heidmann

A large-scale model of an inclined row of film cooling holes is used to obtain detailed surface and flow field measurements that will enable future computational fluid dynamics code development and validation. The model consists of three holes of 1.9-cm diameter that are spaced 3 hole diameters apart and inclined 30° from the surface. The length to diameter ratio of the coolant holes is about 18. Measurements include film effectiveness using IR thermography and near wall thermocouples, heat transfer using liquid crystal thermography, flow field temperatures using a thermocouple, and velocity and turbulence quantities using hotwire anemometry. Results are obtained for blowing ratios of up to 2 in order to capture severe conditions in which the jet is lifted. This first part of the two-part paper presents the detailed velocity component and turbulence stresses along the centerline of the film-cooling hole and at various streamwise locations.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Lamyaa A. El-Gabry ◽  
Douglas R. Thurman ◽  
Philip E. Poinsatte ◽  
James D. Heidmann

A large-scale model of an inclined row of film cooling holes is used to obtain detailed surface and flow field measurements that will enable future computational fluid dynamics code development and validation. The model consists of three holes of 1.9-cm diameter that are spaced three hole diameters apart and inclined 30 deg from the surface. The length to diameter ratio of the coolant holes is about 18. Measurements include film effectiveness using IR thermography and near wall thermocouples, heat transfer using liquid crystal thermography, flow field temperatures using a thermocouple, and velocity and turbulence quantities using hotwire anemometry. Results are obtained for blowing ratios of up to 2 in order to capture severe conditions in which the jet is lifted. For purposes of comparison with prior art, measurements of the velocity and turbulence field along the jet centerline are made and compare favorably with two data sets in the open literature thereby verifying the test apparatus and methodology are able to replicate existing data sets. In addition, a computational fluid dynamics model using a two-equation turbulence model is developed, and the results for velocity, turbulent kinetic energy and turbulent dissipation rate are compared with experimentally derived quantities.


Author(s):  
Bijay K. Sultanian ◽  
Shinichiro Nagao ◽  
Taro Sakamoto

Both experimental and 3D CFD investigations are carried out in a scale model of an industrial gas turbine exhaust system to better understand its complex flow field and to validate CFD prediction capabilities for improved design applications. The model consists of an annular diffuser passage with struts, followed by turning vanes and a rectangular plenum with side exhaust. Precise measurements of total/static pressure and flow velocity distributions at the model inlet, strut outlet and model outlet are made using aerodynamic probes and locally a Laser Doppler Velocimeter (LDV). Numerical analyses of the model internal flow field are performed utilizing a three-dimensional Navier-Stokes (N-S) calculation method with the industry standard k-ε turbulence model. Both the experiments and computations are carried out for three load conditions: full speed no load (FSNL), full speed mid load (FSML, 57% load), and full speed full load (FSFL). Based on the overall comparison between the measurements and CFD predictions, this study concludes that the applied N-S method is capable of predicting complicated gas turbine exhaust system flows for design applications.


Sign in / Sign up

Export Citation Format

Share Document