scholarly journals Online Design

2000 ◽  
Vol 122 (03) ◽  
pp. 68-72
Author(s):  
Jean Thilmany

This article discusses that computer-based technologies have greatly influenced the way design engineers work. The first technological innovation was the use of high-powered personal computers. With PCs, engineers had access to high-speed applications of computer-aided design software right at their own desks. Personal computers took the place of rulers and pencils. The second innovation, he said, is the advancing capability of PCs to function as supercomputers, crunching numbers much faster than formerly possible. By taking advantage of this technology, engineers untrained in a mathematical application such as finite element analysis can run an FEA software program that performs calculations automatically and will shave weeks off the design process. Hothouse uses the Spatial technology to repair CAD models brought in from outside sources and to translate CAD files the company sends to its suppliers, collaborators, and clients. Before Hothouse began sending CAD files to the online service, company employees spent days repairing or rebuilding files on their own. Sometimes suppliers or clients that received Hothouse CAD files had to do similar work on their end.

2018 ◽  
Vol 7 (4.27) ◽  
pp. 148
Author(s):  
Wan Muhammad Syahmi Wan Fauzi ◽  
Abdul Rahman Omar ◽  
Helmi Rashid

Recently, studies concerning motorcycle have been an overwhelming area of research interest. As an alternative to the real world assessment, researchers have utilized motorcycle simulator as a workstation to conduct studies in the motorcycle niche area. This paper deal with the development of a new motorcycle simulator named Semi-Interface Motorcycle Simulator (SiMS). Combination of Computer Aided Design (CAD) and Finite Element Analysis (FEA) software made it possible to design and simulates the motorcycle simulator’s conceptual design before being fabricated. The SiMS setup not only provides a near-to-real and immerse motorcycle riding experience on a super sport motorcycle model, but it also allows safer high speed motorcycle simulations to be conducted in a controlled environment that is portable and ergonomically easier to transport to various venues.  


2014 ◽  
Vol 136 (08) ◽  
pp. 44-49 ◽  
Author(s):  
Jean Thilmany

This article highlights the acoustical analysis changes made by manufacturers in design cycle. Acoustical simulation is being pushed from experts to designers, following the trend for the last 15 or so years that saw other types of engineering applications like finite element analysis and computational fluid dynamics become integrated with computer-aided design packages used by mechanical engineers. With the advent of software packages that allow for design and for acoustical analysis in tandem, design engineers are increasingly running these analyses early in the development cycle and are making design changes to decrease noise and vibration issues they find. Experts suggest that with speaker sound quality and other pertinent information in hand, designers can actually design from the get-go with that information in mind, resulting in fewer design changes down the line. Though early acoustical simulation is still perhaps one of the consumer electronics’ industries best-kept secrets, that’s likely to change as word gets out about the many advantages of front-line simulation.


Author(s):  
Joshua D. Summers

The design exemplar has been proposed as an approach to developing a CAD query language based upon an analysis of the design exemplar components, vocabulary, and extensions to support logical connectives. Design engineers create models of design artifacts with commercial Computer Aided Design (CAD) solid modeling systems. These systems stop short of providing support for querying and retrieving data from within the CAD data files. The design exemplar data structure and algorithm are offered in this paper as a new tool for interrogation of CAD models. The querying capabilities of a comprehensive commercial CAD system is compared with the querying capabilities of the design exemplar based upon user interaction cues. The results of this comparison indicate that for batch processing of CAD model interrogation, the design exemplar provides, based upon user interaction, a superior and more efficient approach.


Author(s):  
James J.-S. Stone ◽  
Andrew R. Thoreson ◽  
Kurt L. Langner ◽  
Jay M. Norton ◽  
Daniel J. Stone ◽  
...  

A custom computer-controlled rapid prototyping system was designed and developed in this research. This system for bio-manufacturing of polymer scaffolds included 3D motion control components, a nozzle, a pressure controller, and a temperature-controlled reservoir containing a biomaterial. Heating elements built into the reservoir melted the biomaterial. The pressure line attached to the reservoir provided a controllable force that extruded the polymer biomaterial through the nozzle and deposited the polymer biomaterial onto a platform to fabricate scaffolds. A low pressure (830 KPa) system was designed and fabricated to accommodate different temperatures, motion speeds, and viscosities of polymer biomaterials. The reservoir with the nozzle was mounted to servo motor-controlled linear x-y motion devices along with a third servo motor-controlled device that controlled the z-position of the platform. Poly(ε-caprolactone) [PCL] was used to fabricate scaffolds with designed structure that were used in cell and tissue regeneration studies. 3D computer-aided design (CAD) with Pro-Engineer and computational finite element analysis (FEA) programs with MSC_Patran and MSC_Marc were used to model scaffold designs with appropriate architecture and material selection. The CAD models were used in FEA to develop new methods for determining mechanical properties of tissue scaffolds of desired structure and geometry. FEA models were validated by mechanical testing and other published results. Technology developed in this research has potential for the advancement of bio-manufacturing, and design optimization of scaffolds for tissue engineering.


2003 ◽  
Vol 125 (09) ◽  
pp. 54-56 ◽  
Author(s):  
Jean Thilmany

Models need to be meshed and made acceptable for analysis before finite element analysis (FEA) can be run. Software providers that make pre-processing applications must keep up with changes in FEA technology to remain competitive. The mesh contains the data on material and structural properties that define how the part will react to certain load conditions. Today's closely integrated computer-aided design (CAD), pre-processing, and FEA applications allow CAD and entry-level FEA technologies to work together within a common user interface and give design engineers a quick, effortless way to see if their designs will meet specifications. Simplifying the FEA programs so a design engineer can use them limits the intricacy of the mesh as well as the depth of analysis. HyperMesh prepares CAD geometries for analysis. The meshed geometries are then exported to Procter & Gamble's customized package analysis system called Virtual Package Simulation. Today, engineers use mesh technologies and attendant FEA programs for an array of analyses. Some are related to manufacturing, but as often as not they've found their way into other industries.


Author(s):  
Andreas Apostolatos ◽  
Altuğ Emiroğlu ◽  
Shahrokh Shayegan ◽  
Fabien Péan ◽  
Kai-Uwe Bletzinger ◽  
...  

AbstractIn this study the isogeometric B-Rep mortar-based mapping method for geometry models stemming directly from Computer-Aided Design (CAD) is systematically augmented and applied to partitioned Fluid-Structure Interaction (FSI) simulations. Thus, the newly proposed methodology is applied to geometries described by their Boundary Representation (B-Rep) in terms of trimmed multipatch Non-Uniform Rational B-Spline (NURBS) discretizations as standard in modern CAD. The proposed isogeometric B-Rep mortar-based mapping method is herein extended for the transformation of fields between a B-Rep model and a low order discrete surface representation of the geometry which typically results when the Finite Volume Method (FVM) or the Finite Element Method (FEM) are employed. This enables the transformation of such fields as tractions and displacements along the FSI interface when Isogeometric B-Rep Analysis (IBRA) is used for the structural discretization and the FVM is used for the fluid discretization. The latter allows for diverse discretization schemes between the structural and the fluid Boundary Value Problem (BVP), taking into consideration the special properties of each BVP separately while the constraints along the FSI interface are satisfied in an iterative manner within partitioned FSI. The proposed methodology can be exploited in FSI problems with an IBRA structural discretization or to FSI problems with a standard FEM structural discretization in the frame of the Exact Coupling Layer (ECL) where the interface fields are smoothed using the underlying B-Rep parametrization, thus taking advantage of the smoothness that the NURBS basis functions offer. All new developments are systematically investigated and demonstrated by FSI problems with lightweight structures whereby the underlying geometric parametrizations are directly taken from real-world CAD models, thus extending IBRA into coupled problems of the FSI type.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2018 ◽  
Vol Vol.18 (No.1) ◽  
pp. 96-107 ◽  
Author(s):  
Lam NGUYEN ◽  
Johannes BUHL ◽  
Markus BAMBACH

Three-axis machines are limited in the production of geometrical features in powder-bed additive manufacturing processes. In case of overhangs, support material has to be added due to the nature of the process, which causes some disadvantages. Robot-based wire-arc additive manufacturing (WAAM) is able to fabricate overhangs without adding support material. Hence, build time, waste of material, and post-processing might be reduced considerably. In order to make full use of multi-axis advantages, slicing strategies are needed. To this end, the CAD (computer-aided design) model of the part to be built is first partitioned into sub-parts, and for each sub-part, an individual build direction is identified. Path planning for these sub-parts by slicing then enables to produce the parts. This study presents a heuristic method to deal with the decomposition of CAD models and build direction identification for sub-entities. The geometric data of two adjacent slices are analyzed to construct centroidal axes. These centroidal axes are used to navigate the slicing and building processes. A case study and experiments are presented to exemplify the algorithm.


Sign in / Sign up

Export Citation Format

Share Document