Analysis of Cord-Reinforced Poly-Rib Serpentine Belt Drive With Thermal Effect

2005 ◽  
Vol 127 (6) ◽  
pp. 1198-1206 ◽  
Author(s):  
G. Song ◽  
K. Chandrashekhara ◽  
W. F. Breig ◽  
D. L. Klein ◽  
L. R. Oliver

This paper investigates the operation of an automotive poly-rib serpentine belt system. A three-dimensional dynamic finite element model, consisting of a driver pulley, a driven pulley, and a complete five-rib V-ribbed belt, was created. Belt construction accounts for three different elastomeric compounds and a single layer of reinforcing cords. Rubber was considered incompressible hyperelastic material, and cord was considered linear elastic material. The material model accounting for thermal strains and temperature-dependent properties of the rubber solids was implemented in ABAQUS∕EXPLICIT code for the simulation. A tangential shear angle and an axial shear angle were defined to quantify shear deformations. The shear angles were found to be closely related to velocity variation along contact arc and the imbalanced contact stress distribution on different sides of the same rib and on different ribs. The temperature effect on shear deformation, tension and velocity variation, and contact stress distribution was investigated and shown in comparison to the results for the same system operating at room temperature.

1976 ◽  
Vol 98 (4) ◽  
pp. 277-282 ◽  
Author(s):  
J. C. Thompson ◽  
Y. Sze ◽  
D. G. Strevel ◽  
J. C. Jofriet

In most bolted connections, the unknown interface pressure distribution and the extent of the contact region are essential parameters in any stress analysis. Concerning these parameters, experimental and numerical studies of a model of an isolated single-bolt region show the following. The contact region between the flanges depends almost exclusively on the ratio of the flange thickness to the diameter of the surface region of each flange over which the bolt prestressing force is distributed; the contact zone is virtually independent of both the level of prestressing force and of the size of the bolt hole; and the contact stress distribution for a typical range of parameters is very closely approximated by a truncated conical distribution. The studies also delineate the regions of the flanges around each bolt where the stress state is strongly three-dimensional and regions where simple plate theory is applicable. The relationships established between the contact stress distribution and the various geometric parameters are presented in a form immediately applicable by designers.


2000 ◽  
Author(s):  
Toshiyuki Sawa ◽  
Tsuneshi Morohoshi ◽  
Akihiro Shimizu

Abstract In designing bolted joints, it is important to know the contact stress distribution which governs the clamping effect or the sealing performance and to estimate the load factor (the ratio of an increment in axial bolt force to an external load) from bolt design standpoint. The clamping force by bolts and the external bending moment are axi-asymmetrical loads and not many investigations have seen reported which treat axi-asymmetrical. In this paper, the clamping effect, and the load factor for the case of solid round bars with circular flanges, subjected to external bending moments, are analyzed as an axi-asymmetrical problem using the three-dimensional theory of elasticity. Experiments were carried out concerning the contact stress distribution, and the load factor for the external bending moment (a relationship between an increment in axial bolt force, and external bending moment). The analytical results were in fairly good agreement with the experimental ones.


2006 ◽  
Vol 324-325 ◽  
pp. 395-398
Author(s):  
Yong Shou Liu ◽  
Xiao Jun Shao ◽  
Zhu Feng Yue

A 3D finite element model of bolt composite joint has been established to determine the stress distribution on the contact surface. The effects of clamping torque and friction on the contact stress and interlaminar normal stress are considered. From the analysis results, contact stress is bared mainly by the 0° layer. The distribution and magnitude of contact stress are conducted by friction. The effect of clamping torque on interlaminar normal stress is very strong. A 3D damage user subroutine is added to the FEM to simulate the damage of joint. By the means of damage simulation, the initiation and progression direction of three types damage are predicted. Matrix cracking and fiber-matrix shear occur at first, and fiber buckling is founded subsequently. The matrix cracking and fiber-matrix debonding initiate at circumferential angle 45°and 135°, and fiber buckling initiate at the 0° layer on the bearing plane. The friction and bolt clamping torque can restrain damage initiation and development.


Author(s):  
Elon J. Terrell ◽  
C. Fred Higgs

In this paper, an analytical model for predicting the contact stress and wear distribution between a textured surface and a compliant flat is presented. The modeling formulation is based upon a two-dimensional stress analysis of the flat, and it allows the contact stress distribution to be found from the distribution of the sample deflection into the flat surface. The wear evolution was calculated from the contact stress.


1993 ◽  
Vol 115 (4) ◽  
pp. 602-606 ◽  
Author(s):  
Xian Liang ◽  
Ji Kaiyuan ◽  
Ju Yongqing ◽  
Chen Darong

A numerical model for the elastic contact of three-dimensional real rough surfaces has been developed and applied to the study of the variations in contact stress distribution in running-in process. The specimens for calculation and experiment are washers with nominally flat grinding surfaces. The stresses of real contact between specimens at each stage of running-in are calculated and the contact stress distributions are given. It is shown that the contact stress distribution is in an exponential form which could be characterized by one dimensionless parameter: λ, the index of contact stress distribution. The proportion of plastic deformation β may be expressed as a function of λ. The results of the present work confirm the reasonableness of the early opinion that the running-in process can be considered as a gradual increase in the elastic component of deformation of the contact area and a decrease in the proportion of plastic deformation.


2011 ◽  
Vol 211-212 ◽  
pp. 535-539
Author(s):  
Ai Hua Liao

The impeller mounted onto the compressor shaft assembly via interference fit is one of the key components of a centrifugal compressor stage. A suitable fit tolerance needs to be considered in the structural design. A locomotive-type turbocharger compressor with 24 blades under combined centrifugal and interference-fit loading was considered in the numerical analysis. The FE parametric quadratic programming (PQP) method which was developed based on the parametric variational principle (PVP) was used for the analysis of stress distribution of 3D elastoplastic frictional contact of impeller-shaft sleeve-shaft. The solution of elastoplastic frictional contact problems belongs to the unspecified boundary problems where the interaction between two kinds of nonlinearities should occur. The effect of fit tolerance, rotational speed and the contact stress distribution on the contact stress was discussed in detail in the numerical computation. The study play a referenced role in deciding the proper fit tolerance and improving design and manufacturing technology of compressor impellers.


Author(s):  
J. Groenendijk ◽  
C. H. Vogelzang ◽  
A. A. A. Molenaar ◽  
B. R. Mante ◽  
L. J. M. Dohmen

The relative strain effects of 15 different load configurations were studied. Using the linear tracking device (LINTRACK) accelerated loading facility, two 5-year-old pavements of 0.15-m asphalt on sand (one virgin and one loaded with 4 million 75-kN wheel loads) were tested. All measured strains were converted to strain factors relative to a standard load (super-single tire, 50 kN, 0.70 MPa). The results were compared with earlier measurements and BISAR-calculated factors. The results on the loaded pavement showed markedly more variation than those on the unloaded pavement. Generally, the BISAR-calculated relative strain factors matched the measured values well for the super-single tire. Considerable difference occurred only in the most extreme load conditions. Nonuniform contact stress distribution can be the cause for this. The calculated relative strain factors for the dual tire configurations underestimated the measured values.


Author(s):  
Sherif Mohareb ◽  
Arndt Goldack ◽  
Mike Schlaich

Cable-stayed and extra-dosed bridges are today widely used bridge types. Recently, saddles have been used to deviate strands of cables in the pylons. Up to now the mechanics of strands on saddles are not well understood. It was found, that typical longitudinal contact stress distributions between strand and saddle show a strong nonlinearity and a high peak value around the detachment point, where the strand meets the saddle. This paper presents a procedure to analyse the longitudinal contact stress distribution obtained by FEM calculations: This contact stress can be idealised as a constant contact stress according to the Barlow's formula and a contact force at the detachment point due to the flexural rigidity of the bent tension elements. An analytical model is provided to verify this contact force. Finally, a formula is presented to calculate the maximum contact stress. This study provides the basis for further research on saddle design and fatigue of strands.


Sign in / Sign up

Export Citation Format

Share Document