Exit Flow Field and Performance of Axial Flow Fans

2005 ◽  
Vol 128 (2) ◽  
pp. 332-340 ◽  
Author(s):  
S. C. Yen ◽  
Frank K. T. Lin

Flow fields near the exit and the global performance parameters of the various types of axial flow fans are studied with Particle Image Velocimetry and a standard AMCA 210 flow bench. The fans used in this study included the shrouded, shroudless, and winglet-blade types. The velocity vectors, streamlines, vorticity contours, velocity distributions, and performances are presented and discussed. The flow patterns on the radial and axial planes show that a vortex always exists near the exit of the fans at various impeller angles. The experimental results demonstrate that the shrouded fan with winglets has the most stable flow field and the best fan performance.

1997 ◽  
Vol 119 (3) ◽  
pp. 623-632 ◽  
Author(s):  
K. J. Myers ◽  
R. W. Ward ◽  
Andre´ Bakker

Digital particle image velocimetry (DPIV) has been used to examine the flow field in a vessel agitated by an axial-flow impeller in turbulent operation. Both a pitched-blade turbine and a high-efficiency impeller were studied. Time series analysis indicates that the flow field is not steady; rather, it is subject to transients with frequencies well below the blade passage frequency (periods ranging from 40 to over 300 impeller revolutions have been observed). This result has important implications for computational modeling because current descriptions of agitated vessels are based upon time-averaged flow fields with superimposed turbulence. This modeling approach may not accurately capture the mixing associated with the low-frequency phenomena observed in this study.


1997 ◽  
Vol 119 (2) ◽  
pp. 176-181 ◽  
Author(s):  
D. Tisserant ◽  
F. A. E. Breugelmans

The study of turbomachinery flow fields requires detailed experimental data. The rotating parts of turbomachines greatly limit the measurement techniques that can be used. Particle Image Velocimetry (PIV) appears to be a suitable tool to investigate the blade-to-blade flow in a rotor. The facility is a subsonic axial-flow compressor. The experimental apparatus enables the recording of a double-exposed photograph in a circumferential plane located at 85 percent of the blade height. The illumination plane has an axial direction and is provided by a pulsed ruby laser. The tracers used are submicron glycerine oil droplets. Data are processed by Young’s fringes method. Measurements were performed at 3000, 4500, and 6000 rpm with velocities in the range of 30 to 70 m/s. Steady operating conditions are chosen in such a way that the effect of radial velocity on PIV measurements can be neglected. Experimental problems encountered included homogeneous seeding of the flow field and laser light scattering from blade surfaces. The uncertainty affecting the velocity determination corresponds to 2 percent of the measured value. For a given set of operating conditions, 10 PIV pictures are recorded. The periodic flow field is approximated by averaging the experimental data point by point. Upstream and downstream velocity triangles are confirmed by measurements obtained from pressure probes. PIV measurement results were found to be similar to those of a blade-to-blade potential-flow calculation.


2002 ◽  
Vol 33 (6) ◽  
pp. 794-800 ◽  
Author(s):  
U. Dierksheide ◽  
P. Meyer ◽  
T. Hovestadt ◽  
W. Hentschel

2010 ◽  
Vol 43 (6) ◽  
pp. 1039-1047 ◽  
Author(s):  
Emily J. Berg ◽  
Jessica L. Weisman ◽  
Michael J. Oldham ◽  
Risa J. Robinson

2018 ◽  
Vol 841 ◽  
pp. 1-27 ◽  
Author(s):  
Leon Vanstone ◽  
Mustafa Nail Musta ◽  
Serdar Seckin ◽  
Noel Clemens

This study investigates the mean flow structure of two shock-wave boundary-layer interactions generated by moderately swept compression ramps in a Mach 2 flow. The ramps have a compression angle of either $19^{\circ }$ or $22.5^{\circ }$ and a sweep angle of $30^{\circ }$. The primary diagnostic methods used for this study are surface-streakline flow visualization and particle image velocimetry. The shock-wave boundary-layer interactions are shown to be quasi-conical, with the intermittent region, separation line and reattachment line all scaling in a self-similar manner outside of the inception region. This is one of the first studies to investigate the flow field of a swept ramp using particle image velocimetry, allowing more sensitive measurements of the velocity flow field than previously possible. It is observed that the streamwise velocity component outside of the separated flow reaches the quasi-conical state at the same time as the bulk surface flow features. However, the streamwise and cross-stream components within the separated flow take longer to recover to the quasi-conical state, which indicates that the inception region for these low-magnitude velocity components is actually larger than was previously assumed. Specific scaling laws reported previously in the literature are also investigated and the results of this study are shown to scale similarly to these related interactions. Certain limiting cases of the scaling laws are explored that have potential implications for the interpretation of cylindrical and quasi-conical scaling.


Author(s):  
Deb Banerjee ◽  
Rick Dehner ◽  
Ahmet Selamet ◽  
Keith Miazgowicz ◽  
Todd Brewer ◽  
...  

Abstract Understanding the velocity field at the inlet of an automotive turbocharger is critical in order to suppress the instabilities encountered by the compressor, extend its map and improve the impeller design. In the present study, two-dimensional particle image velocimetry experiments are carried out on a turbocharger compressor without any recirculating channel to investigate the planar flow structures on a cross-sectional plane right in front of the inducer at a rotational speed of 80 krpm. The objective of the study is to investigate the flow field in front of a compressor blade passage and quantify the velocity distributions along the blade span for different mass flow rates ranging from choke (77 g/s) to deep surge (13.6 g/s). It is observed that the flow field does not change substantially from choke to about 55 g/s, where flow reversal is known to start at this speed from earlier measurements. While the tangential velocity is less than 8 m/s, the radial velocity increases along the span to 17–20 m/s near the tip at high flow rates (55–77 g/s). As the mass flow rate is reduced below 55 g/s, the radial component starts decreasing and the tangential velocity increases rapidly. From about 5 m/s at 55 g/s, the tangential velocity at the blade tip exceeds 50 m/s at 50 g/s and reaches a maximum of about 135 m/s near surge. These time-averaged distributions are similar for different angular locations in front of the blade passage and do not exhibit any substantial azimuthal variation.


2020 ◽  
pp. 1420326X2092624
Author(s):  
Xin Wang ◽  
Yukun Xu ◽  
Yinchen Yang ◽  
Bingyan Song

For large space buildings like industrial plants with huge heat generation, the role that surface-source plumes play becomes more crucial. To study the air distribution and movement of plumes, the first step is to quantify how the airflow gets distributed in chambers. The experiment was carried out in a thermostatic chamber where there was no ventilation. Four hundred flow field snapshots (in each region) were measured by a two-dimensional particle image velocimetry system at a sampling frequency of 3 Hz, and the time-average flow field was processed by the adaptive correlation algorithm to quantify the air distribution of the plume. According to the measured data, the variation law of the axial velocity of the surface-source plume under different heat source parameters was analysed. The formula coefficients of the axial velocity, the extended radius and the mass flow of the plume were discussed, and the coefficients from current two mainstream methods and those obtained in this paper were compared. The results of this study will be useful to predict motion of surface-plumes and optimize airflow patterns in large spaces.


Sign in / Sign up

Export Citation Format

Share Document