A Discussion of Transpiration Cooling Problems through an Analytical Solution of Local Thermal Nonequilibrium Model
To study transpiration cooling problems, an analytical solution of the local thermal nonequilibrium (LTNE) model with the second or third boundary conditions is presented. This solution is obtained through neglecting the thermal conduction of the fluid coolant in porous media. By the analytical solution, two problems are investigated. At first, the parameters which influence transpiration cooling effects are analyzed, and the analysis indicates that the cooling effects are dominated by coolant mass flow rate, the Biot number at the hot surface of porous plate, and the Biot number in the pores. Second, the error caused by the assumption of the local thermal equilibrium (LTE) model is quantitatively discussed, and the variation trend of the LTE error is analyzed. Based on the analytical solution and the error analysis, a quantitative criterion to choose the LTNE or LTE model is suggested, and the corresponding expression is also given in this paper.