Increasing Adiabatic Film-Cooling Effectiveness by Using an Upstream Ramp

2006 ◽  
Vol 129 (4) ◽  
pp. 464-471 ◽  
Author(s):  
Sangkwon Na ◽  
Tom I-P. Shih

A new design concept is presented to increase the adiabatic effectiveness of film cooling from a row of film-cooling holes. Instead of shaping the geometry of each hole; placing tabs, struts, or vortex generators in each hole; or creating a trench about a row of holes, this study proposes a geometry modification upstream of the holes to modify the approaching boundary-layer flow and its interaction with the film-cooling jets. Computations, based on the ensemble-averaged Navier–Stokes equations closed by the realizable k‐ε turbulence model, were used to examine the usefulness of making the surface just upstream of a row of film-cooling holes into a ramp with a backward-facing step. The effects of the following parameters were investigated: angle of the ramp (8.5deg, 10deg, 14deg), distance between the backward-facing step and the row of film-cooling holes (0.5D,D), blowing ratio (0.36, 0.49, 0.56, 0.98), and “sharpness” of the ramp at the corners. Results obtained show that an upstream ramp with a backward-facing step can greatly increase surface adiabatic effectiveness. The laterally averaged adiabatic effectiveness with a ramp can be two or more times higher than without the ramp by increasing upstream and lateral spreading of the coolant.

Author(s):  
S. Na ◽  
T. I.-P. Shih

A new design concept is presented to increase the adiabatic effectiveness of film cooling jets without unduly increasing surface heat transfer and pressure loss. Instead of shaping the film-cooling hole at its downstream end as is done for shaped holes, this study proposes a geometry modification upstream of the film-cooling hole to modify the approaching boundary-layer flow and its interaction with the film-cooling jet. Computations, based on the ensemble-averaged Navier-Stokes equations closed by the realizable k-ε turbulence model, were used to examine the usefulness of making the surface just upstream of the film-cooling hole into a ramp with backward-facing step. The effects of the following parameters were investigated: angle of the ramp (8.5°, 10°, 14°), distance between the backward-facing step of the ramp and the film-cooling hole (0.5D, D), and blowing ratio (0.36, 0.49, 0.56, 0.98). Results obtained show that an upstream ramp with a backward-facing step can greatly increase film-cooling adiabatic effectiveness. The laterally averaged adiabatic effectiveness with ramp can be two or more times higher than without the ramp. Also, the ramp increases the surface area that each film-cooling jet protects. However, using the ramp does increase drag. The increase in surface heat transfer was found to be minimal.


Author(s):  
Sana Abd Alsalam ◽  
Bassam Jubran

Abstract This study introduces a novel and simple strategy; compound angle upstream sister holes (CAUSH) to increase film cooling performance of the cylindrical hole by combining two techniques: Sister holes; (two small round holes placed upstream the primary hole) and compound angle hole. Whereas the upstream sister holes were injected at several compound angles β = 0°, 45°, 75°, and 90°, while the main hole was injected to the streamwise direction at 35° on a flat plate. FLUENT-ANSYS code was used to perform the simulation by solving the 3D Reynolds Averaged Navier-Stokes Equations. The capability of three types of k-ε turbulence modeling combined with the enhanced wall treatment is investigated to predict the film cooling performance of sister holes. A detailed computational analysis of the cooling performance of the (CAUSH) and the flow field was done at a density ratio equal to two (D.R = 2) and four blowing ratios M = 0.25, 0.5, 1.0 and 1.5 to predict the centerline and laterally averaged film cooling performance. The centerline effectiveness results showed that the highest cooling performance from the examined (CAUSH) was obtained at β = 0°, 45°, and 90° for low and high blowing ratio, the highest laterally averaged film cooling performance was captured at β = 0° and 90° for all tested blowing ratios. Also, the results indicated that the upstream sister hole with 90° compound angle holes has the best overall film cooling effectiveness while the worst performance is attained at β = 75°.


2017 ◽  
Vol 139 (9) ◽  
Author(s):  
Shane Haydt ◽  
Stephen Lynch ◽  
Scott Lewis

Shaped film cooling holes are used extensively in gas turbines to reduce component temperatures. These holes generally consist of a metering section through the material and a diffuser to spread coolant over the surface. These two hole features are created separately using electrical discharge machining (EDM), and occasionally, an offset can occur between the meter and diffuser due to misalignment. The current study examines the potential impact of this manufacturing defect to the film cooling effectiveness for a well-characterized shaped hole known as the 7-7-7 hole. Five meter-diffuser offset directions and two offset sizes were examined, both computationally and experimentally. Adiabatic effectiveness measurements were obtained at a density ratio of 1.2 and blowing ratios ranging from 0.5 to 3. The detriment in cooling relative to the baseline 7-7-7 hole was worst when the diffuser was shifted upstream (aft meter-diffuser offset), and least when the diffuser was shifted downstream (fore meter-diffuser offset). At some blowing ratios and offset sizes, the fore meter-diffuser offset resulted in slightly higher adiabatic effectiveness than the baseline hole, due to a reduction in the high-momentum region of the coolant jet caused by a separation region created inside the hole by the fore meter-diffuser offset. Steady Reynolds-averaging Navier–Stokes (RANS) predictions did not accurately capture the levels of adiabatic effectiveness or the trend in the offsets, but it did predict the fore offset's improved performance.


Author(s):  
S. Baheri ◽  
B. A. Jubran ◽  
S. P. Alavi Tabrizi

This paper reports a computational investigation on the effects of mainstream turbulence intensity on film cooling effectiveness from trenched holes over a symmetrical blade. Computational solutions of the steady, Reynolds-Averaged Navier-Stokes equations are obtained using a finite volume method with k – ε Turbulence model. Whenever possible, computational results are compared with experimental ones from data found in the open literature. Computational results are presented for a row of 25 deg forward-diffused film hole within transverse slot injected at 35 deg to AGTB symmetrical blade. Four blowing ratios, M = 0.3, 0.5, 0.9 and 1.3 are studied together with four mainstream turbulence intensities of Tu = 0.5%, 2%, 4% and 10%. Results indicate that the trenched shaped holes tend to give better film cooling effectiveness than that obtained from discrete shaped holes for all blowing ratios and all turbulence intensities. The trenching of shaped holes has changed the optimum blowing ratio and also the location of re-attachment of separated jet at high blowing ratios. Moreover, it has been found that the effect of mainstream turbulence intensity for trenched shaped holes is similar to that obtained for discrete shaped holes with the exception that the sensitivity of film cooling effectiveness to turbulence intensity has decreased for trenched shaped holes.


Author(s):  
E. Kannan ◽  
Seralathan Sivamani ◽  
D. G. Roychowdhury ◽  
T. Micha Premkumar ◽  
V. Hariram

Abstract Three-dimensional Reynolds-averaged Navier–Stokes equations with shear stress transport turbulence model are used to analyze the film cooling effectiveness on a flat plate having single row of film hole involving cylindrical hole (CH) and laidback hole (LBH). The CH and LBH are inclined at 35 deg to the surface with a compound angle (β) orientation ranging from favorable to adverse inclination (i.e., β = 0–180 deg) and examined at high and low blowing ratios (M = 1.25 and 0.60). CH with an adverse compound angle of 135 deg gives the highest area-averaged film cooling effectiveness in comparison with LBH configuration. Also, CH β = 135 deg film hole shows a higher lateral coolant spread. Later, double jet film cooling (DJFC) concept is studied for this CH. In all the cases, the first hole compound angle is fixed as 135 deg, and the second hole angle is varied from 135 deg to 315 deg. At high blowing ratio, the dual jet cylindrical hole (DJCH) with β = 135 deg, 315 deg gives a higher area-averaged film cooling effectiveness by around 66.50% compared to baseline CH β = 0 deg. On comparing all CH, LBH, and DJCH cases, the highest area-averaged film cooling effectiveness is obtained by CH configuration with β = 135 deg. Hence, the CH with its adverse compound angle (β = 135 deg) orientation could be an appropriate film cooling configuration for gas turbine blade cooling.


Author(s):  
Siavash Khajehhasani ◽  
Bassam Jubran

A numerical investigation of the film cooling performance from novel sister shaped single-holes (SSSH) is presented in this paper and the obtained results are compared with a single cylindrical hole, a forward diffused shaped hole, as well as discrete sister holes. Three types of the novel sister shaped single-hole schemes namely downstream, upstream and up/downstream SSSH, are designed based on merging the discrete sister holes to the primary hole in order to reduce the jet lift-off effect and increase the lateral spreading of the coolant on the blade surface as well as a reduction in the amount of coolant in comparison with discrete sister holes. The simulations are performed using three-dimensional Reynolds-Averaged Navier Stokes analysis with the realizable k–ε model combined with the standard wall function. The upstream SSSH demonstrates similar film cooling performance to that of the forward diffused shaped hole for the low blowing ratio of 0.5. While it performs more efficiently at M = 1, where the centerline and laterally averaged effectiveness results improved by 70% and 17%, respectively. On the other hand, the downstream and up/downstream SSSH schemes show a considerable improvement in film cooling performance in terms of obtaining higher film cooling effectiveness and less jet lift-off effect as compared with the single cylindrical and forward diffused shaped holes for both blowing ratios of M = 0.5 and 1. For example, the laterally averaged effectiveness for the downstream SSSH configuration shows an improvement of approximately 57% and 110% on average as compared to the forward diffused shaped hole for blowing ratios of 0.5 and 1, respectively.


Author(s):  
Pingfan He ◽  
Dragos Licu ◽  
Martha Salcudean ◽  
Ian S. Gartshore

The effect of varying coolant density on film cooling effectiveness for a turbine blade-model was numerically investigated and compared with experimental data. This model had a semi-circular leading edge with four rows of laterally-inclined film cooling orifices positioned symmetrically about the stagnation line. A curvilinear coordinate-based CFD code was developed and used for the numerical investigation. The code used a domain segmentation strategy in conjunction with general curvilinear grids to model the complex blade configuration. A multigrid method was used to accelerate the convergence rate. The time-averaged, variable-density, Navier-Stokes equations together with the energy or scalar equation were solved. Turbulence closure was attained by the standard k–ε model with a near-wall k model. Either air or CO2 was used as coolant in three cases of injection through single rows and alternatively staggered double raws of holes. Two different blowing rates were investigated in each case and compared with experimental data. The experimental results were obtained using a wind tunnel model, and the mass/heat analogy was used to determine the film cooling effectiveness. The higher density of the carbon dioxide coolant (approximately 1.5 times the density of air) in the isothermal mass injection experiments, was used to simulate the effects of injection of a colder air in the corresponding adiabatic heat transfer situation. Good agreement between calculated and measured film cooling effectiveness was found for low blowing ratio M ≤ 0.5 and the effect of density was not significant. At higher blowing ratio M > 1 the calculations consistently overpredict the measured values of film cooling effectiveness.


Author(s):  
Vijay K. Garg

A multi-block, three-dimensional Navier-Stokes code has been used to compute heat transfer coefficient on the blade, hub and shroud for a rotating high-pressure turbine blade with 172 film-cooling holes in eight rows. Film cooling effectiveness is also computed on the adiabatic blade. Wilcox’s k-ω model is used for modeling the turbulence. Of the eight rows of holes, three are staggered on the shower-head with compound-angled holes. With so many holes on the blade it was somewhat of a challenge to get a good quality grid on and around the blade and in the tip clearance region. The final multi-block grid consists of 4784 elementary blocks which were merged into 276 super blocks. The viscous grid has over 2.2 million cells. Each hole exit, in its true oval shape, has 80 cells within it so that coolant velocity, temperature, k and ω distributions can be specified at these hole exits. It is found that for the given parameters, heat transfer coefficient on the cooled, isothermal blade is highest in the leading edge region and in the tip region. Also, the effectiveness over the cooled, adiabatic blade is the lowest in these regions. Results for an uncooled blade are also shown, providing a direct comparison with those for the cooled blade. Also, the heat transfer coefficient is much higher on the shroud as compared to that on the hub for both the cooled and the uncooled cases.


Author(s):  
R.-D. Baier ◽  
W. Koschel ◽  
K.-D. Broichhausen ◽  
G. Fritsch

The design of discrete film cooling holes for gas turbine airfoil applications is governed by a number of parameters influencing both their aerodynamic and thermal behaviour. This numerical and experimental study focuses on the marked differences between film cooling holes with combined streamwise and lateral inclination and film cooling holes with streamwise inclination only. The variation in the blowing angle was chosen on a newly defined and physically motivated basis. High resolution low speed experiments on a large scale turbine airfoil gave insights particularly into the intensified mixing process with lateral ejection. The extensive computational study is performed with the aid of a 3D block-structured Navier-Stokes solver incorporating a low-Reynolds-number k-ε turbulence model. Special attention is paid to mesh generation as a precondition for accurate high-resolution results. The downstream temperature fields of the jets show reduced spanwise variations with increasing lateral blowing angle; these variations are quantified for a comprehensive variety of configurations in terms of adiabatic film cooling effectiveness.


2006 ◽  
Vol 129 (2) ◽  
pp. 294-302 ◽  
Author(s):  
Scot K. Waye ◽  
David G. Bogard

Adiabatic film cooling effectiveness of axial holes embedded within a transverse trench on the suction side of a turbine vane was investigated. High-resolution two-dimensional data obtained from infrared thermography and corrected for local conduction provided spatial adiabatic effectiveness data. Flow parameters of blowing ratio, density ratio, and turbulence intensity were independently varied. In addition to a baseline geometry, nine trench configurations were tested, all with a depth of 1∕2 hole diameter, with varying widths, and with perpendicular and inclined trench walls. A perpendicular trench wall at the very downstream edge of the coolant hole was found to be the key trench characteristic that yielded much improved adiabatic effectiveness performance. This configuration increased adiabatic effectiveness up to 100% near the hole and 40% downstream. All other trench configurations had little effect on the adiabatic effectiveness. Thermal field measurements confirmed that the improved adiabatic effectiveness that occurred for a narrow trench with perpendicular walls was due to a lateral spreading of the coolant and reduced coolant jet separation. The cooling levels exhibited by these particular geometries are comparable to shaped holes, but much easier and cheaper to manufacture.


Sign in / Sign up

Export Citation Format

Share Document