Improving the Reliability of the Tube-Hydroforming Process by the Taguchi Method

2006 ◽  
Vol 129 (2) ◽  
pp. 242-247 ◽  
Author(s):  
Bing Li ◽  
T. J. Nye ◽  
Don R. Metzger

The tube-hydroforming process has undergone extremely rapid development. To ensure a reliable hydroforming process at the design stage, applying robust design methodologies becomes crucial to the success of the resulting process. The reliability of the tube-hydroforming process based on the tube wall thickness thinning ratio is studied in this paper. In order to improve the reliability of the process, the Taguchi method, which is capable of evaluating the effects of process variables on both the mean and variance of process output, is used to determine the optimal forming parameters for minimizing the variation and average value of the thinning ratio. Finite element simulation is used to analyze the virtual experiments according to the experimental arrays. A cross-extrusion hydroformed tube is employed as an example to illustrate the effectiveness of this approach.

Author(s):  
Bing Li ◽  
T. J. Nye ◽  
Don R. Metzger

The tube hydroforming process has undergone extremely rapid development, especially in applications for the automobile industry. In-process variation of forming parameters such as material properties, friction conditions and part geometries will directly affect the quality of forming response by causing variation in the process output. To ensure a reliable hydroforming process at the design stage, applying robust design methodologies becomes crucial to the success of the resulting process. The reliability of the tube hydroforming process based on the tube wall thickness thinning ratio is studied in this paper. In order to improve the reliability of the process, the Taguchi method, which is capable of evaluating the effects of process variables on both the mean and variance of process output, is used to determine the optimal forming parameters for minimizing the variation and average value of the thinning ratio. The Taguchi method is applied to design experimental arrays which incorporate design (i.e., controllable) parameters and noise (i.e., non-controllable) parameters. Finite element simulation is used to analyze the virtual experiments according to the experimental arrays. Through statistical analysis, the influence of each design parameter on both the mean and variance of the thinning ratio is obtained, and is used to find the optimal combination of design parameters for minimum thinning ratio, minimum variance of thinning ratio, and maximum expected process reliability. A cross-extrusion hydroformed tube is employed as an example to illustrate the effectiveness of this approach.


Metals ◽  
2020 ◽  
Vol 10 (11) ◽  
pp. 1518
Author(s):  
Yeong-Maw Hwang ◽  
Yau-Jiun Tsai

Manufacturing of irregular bellows with small corner radii and sharp angles is a challenge in tube hydroforming processes. Design of movable dies with an appropriate loading path is an alternative solution to obtain products with required geometrical and dimensional specifications. In this paper, a tube hydroforming process using a novel movable die design is developed to decrease the internal pressure and the maximal thinning ratio in the formed product. Two kinds of feeding types are proposed to make the maximal thinning ratio in the formed bellows as small as possible. A finite element simulation software “DEFORM 3D” is used to analyze the plastic deformation of the tube within the die cavity using the proposed movable die design. Forming windows for sound products using different feeding types are also investigated. Finally, tube hydroforming experiments of irregular bellows are conducted and experimental thickness distributions of the products are compared with the simulation results to validate the analytical modeling with the proposed movable die concept.


2018 ◽  
Vol 5 (11) ◽  
pp. 25376-25381 ◽  
Author(s):  
P. Venkateshwar Reddy ◽  
B. Veerabhadra Reddy ◽  
P. Srinivasa Rao

2011 ◽  
Vol 473 ◽  
pp. 579-586
Author(s):  
Majid Elyasi ◽  
Hassan Khanlari ◽  
Mohammad Bakhshi-Jooybari

In this paper, the effect of pressure path on thickness distribution and product geometry in the tube hydroforming process is studied by finite element simulation and experimental approach. In simulations and experiments, low carbon stainless steel (SS316L) seamless tubes were used. The obtained results indicated that with increasing of the initial pressure, the bulge value of the part increases and the wrinkling value decreases. In addition, if the initial pressure is highly decreased, then bursting may occur.


Author(s):  
K J Kim ◽  
S T Won ◽  
Y H Lee ◽  
D S Bae ◽  
C W Sung ◽  
...  

The automotive industry has shown a growing interest in tube hydroforming during recent years. The advantages of hydroforming (less thinning, a more efficient manufacturing process, etc.) can, for instance, be combined with the high strength of extra-high-strength steels, which are usually less formable, to produce structural automotive components which exhibit lower weight and improved service performance. Design and production of tubular components require knowledge about tube material and forming behaviour during hydroforming and how the hydroforming operation itself should be controlled. These issues are studied analytically in the present paper. In this study, the whole process of rear subframe parts development by tube hydroforming using steel material having a tensile strength of 440MPa is presented. At the part design stage, it requires a feasibility study and process design assisted by computer aided engineering to confirm hydroformability in detail. The effects of parameters such as internal pressure, axial feeding, and geometry shape in the automotive rear subframe by the hydroforming process were carefully investigated. The overall possibility of hydroformable rear subframe parts could be examined by cross-sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending and hydroforming. In addition, all the components of a prototyping tool are designed and interference with a press is examined from the point of geometry and thinning.


2011 ◽  
Vol 110-116 ◽  
pp. 1477-1482 ◽  
Author(s):  
Majid Elyasi ◽  
Hassan Khanlari ◽  
Mohammad Bakhshi-Jooybari

In this paper, the effect of load path on thickness distribution and product geometry in the tube hydroforming process is studied by finite element simulation and experimental approach. The pressure path was obtained by using finite element simulation and its validation with experiments. In simulations and experiments, low carbon stainless steel (SS316L) seamless tubes were used. The obtained results indicated that if pressure reaches to maximum faster, bulge value and thinning of the part will be more and wrinkling value will be less.


2009 ◽  
Vol 410-411 ◽  
pp. 335-343
Author(s):  
Mohammad Bakhshi-Jooybari ◽  
Majid Elyasi ◽  
A. Gorji ◽  
G. Mohammad-Alinejad ◽  
S.J. Hosseinipour ◽  
...  

Seamless tubular components, such as stepped tubes, conical tubes and box shape tubes, are mainly produced in tube hydroforming process. In forming the components in this process, complete filling the die corners is very difficult. In this paper, the mechanism of improvement of die corner filling in a proposed tube hydroforming die was investigated. The FEM simulation results showed that the material flow and stress distribution could theoretically clarify the die corner filling in the proposed die. Also, the comparison of the die corner filling between the new die and a conventional die was explained. In order to verify the simulation results, some experiments were performed.


2007 ◽  
Vol 344 ◽  
pp. 461-467 ◽  
Author(s):  
M. Loh-Mousavi ◽  
Kenichiro Mori ◽  
K. Hayashi ◽  
M. Bakhshi

The filling of the die corner in hydroforming of a tube with a box die was improved by controlling wrinkling under oscillation of internal pressure. In this process, a small wrinkle occurs near the die corner in the former stage, and then the wrinkle is eliminated in the latter stage because the flat bulge appears in the former stage due to the oscillation of internal pressure. A hydroforming process of steel tubes with a box die was performed in both three dimensional finite element simulation and experiment. The filling of the die corner for the mean linear pressure was not sufficient due to large wrinkles appearing in the former stage, whereas bursting occurs for the peak linear pressure due to round bulging. On the other hand, the uniformity of wall thickness of the formed tube was improved by the pulsating pressure.


Sign in / Sign up

Export Citation Format

Share Document