Numerical and Experimental Study of the Effect Pressure Path in Tube Hydroforming Process

2011 ◽  
Vol 473 ◽  
pp. 579-586
Author(s):  
Majid Elyasi ◽  
Hassan Khanlari ◽  
Mohammad Bakhshi-Jooybari

In this paper, the effect of pressure path on thickness distribution and product geometry in the tube hydroforming process is studied by finite element simulation and experimental approach. In simulations and experiments, low carbon stainless steel (SS316L) seamless tubes were used. The obtained results indicated that with increasing of the initial pressure, the bulge value of the part increases and the wrinkling value decreases. In addition, if the initial pressure is highly decreased, then bursting may occur.

2011 ◽  
Vol 110-116 ◽  
pp. 1477-1482 ◽  
Author(s):  
Majid Elyasi ◽  
Hassan Khanlari ◽  
Mohammad Bakhshi-Jooybari

In this paper, the effect of load path on thickness distribution and product geometry in the tube hydroforming process is studied by finite element simulation and experimental approach. The pressure path was obtained by using finite element simulation and its validation with experiments. In simulations and experiments, low carbon stainless steel (SS316L) seamless tubes were used. The obtained results indicated that if pressure reaches to maximum faster, bulge value and thinning of the part will be more and wrinkling value will be less.


2000 ◽  
Author(s):  
G. T. Kridli ◽  
L. Bao ◽  
P. K. Mallick

Abstract The tube hydroforming process has been used in industry for several years to produce components such as exhaust manifolds. Recent advances in forming machines and machine control systems have allowed for the introduction and the implementation of the process to produce several automotive components, which were originally produced by the stamping process. Components such as side rails, engine cradles, space frames, and several others can be economically produced by tube hydroforming. The process involves forming a straight or a pre-bent tube into a die cavity using internal hydraulic pressure, which may be coupled with controlled axial feeding of the tube. One of the remaining challenges facing product and process engineers in designing hydroformed parts is the lack of an extensive knowledge base of the process. This includes a full understanding of the process mechanics and the effects of the material properties on the quality of the hydroformed product. This paper reports on the results of two dimensional plane strain finite element models of the tube hydroforming process, which were conducted using the commercial finite element code ABAQUS/Standard. The objective of the study is to examine the effects of material properties, die geometry, and frictional characteristics on the selection of the hydroforming process parameters. The paper discusses the effects of the strain-hardening exponent, friction coefficient at the die-workpiece interface, initial tube wall thickness, and die corner radii on the thickness distribution of the hydroformed tube.


2011 ◽  
Vol 473 ◽  
pp. 618-623
Author(s):  
Khalil Khalili ◽  
Seyed Yousef Ahmadi-Brooghani ◽  
Amir Ashrafi

Tube hydroforming process is one of the metal forming processes which uses internal pressure and axial feeding simultaneously to form a tube into the die cavity shape. This process has some advantages such as weight reduction, more strength and better integration of produced parts. In this study, T-shape tube hydroforming was analyzed by experimental and finite element methods. In Experimental method the pulsating pressure technique without counterpunch was used; so that the internal pressure was increased up to a maximum, the axial feeding was then stopped. Consequently, the pressure decreased to a minimum. The sequence was repeated until the part formed to its final shape. The finite element model was also established to compare the experimental results with the FE model. It is shown that the pulsating pressure improves the process in terms of maximum protrusion height obtained. Counterpunch was eliminated as being unnecessary. The results of simulation including thickness distribution and protrusion height were compared to the part produced experimentally. The result of modeling is in good agreement with the experiment. The paper describes the methodology and gives the results of both experiment and modeling.


2011 ◽  
Vol 130-134 ◽  
pp. 191-194
Author(s):  
Zhou De Qu

The recent application of tube hydroforming in the automotive industry demands finite element analysis, since it is rapidly being used as an effective tool for the evaluation of the design of hydroforming processes. In this paper the formability of rear sub-frame in car body with tube hydroforming is studied. The comparison of various feeding and pressure on the hydroforming process is evaluated utilizing Finite Element Method to obtain detailed information on the deformation behaviors in hydroforming of rear sub-frame. It has been shown that optical leading paths such as axial feeding and internal pressure can quantify the circumferential thickness distribution in the rear sub-frame tube periphery.


2013 ◽  
Vol 554-557 ◽  
pp. 287-299
Author(s):  
Jing Cai Wang ◽  
Laurent Langlois ◽  
Muhammad Rafiq ◽  
Régis Bigot ◽  
Hao Lu

The presented work is dedicated to studying the forgeability of bimaterial cladded workpiece. Hot upsetting tests of cylindrical low carbon steel (C15) billets weld cladded (MIG) by stainless steel (SS316L) are experimentally and numerically studied. Upsetting tests with different upsetting ratios are performed in different tribology conditions at 1050°C which is within the better forgeability temperature range of both substrate and cladding materials[ ]. Slab model and finite-element simulation are conducted to parametrically study the potential forgeability of the bimaterial cladded workpiece. The viscoplastic law is adopted to model the friction at the die/billet interface. The friction condition at the die/billet interface has a great impact on the final material distribution, forging effort and cracking occurrence. With Latham and Cockcroft Criterion, the possibility and potential position of cracks could be predicted.


2011 ◽  
Vol 62 ◽  
pp. 21-35 ◽  
Author(s):  
Anis Ben Abdessalem ◽  
A. El Hami

In metal forming processes, different parameters (Material constants, geometric dimensions, loads …) exhibits unavoidable scatter that lead the process unreliable and unstable. In this paper, we interest particularly in tube hydroforming process (THP). This process consists to apply an inner pressure combined to an axial displacement to manufacture the part. During the manufacturing phase, inappropriate choice of the loading paths can lead to failure. Deterministic approaches are unable to optimize the process with taking into account to the uncertainty. In this work, we introduce the Reliability-Based Design Optimization (RBDO) to optimize the process under probabilistic considerations to ensure a high reliability level and stability during the manufacturing phase and avoid the occurrence of such plastic instability. Taking account of the uncertainty offer to the process a high stability associated with a low probability of failure. The definition of the objective function and the probabilistic constraints takes advantages from the Forming Limit Diagram (FLD) and the Forming Limit Stress Diagram (FLSD) used as a failure criterion to detect the occurrence of wrinkling, severe thinning, and necking. A THP is then introduced as an example to illustrate the proposed approach. The results show the robustness and efficiency of RBDO to improve thickness distribution and minimize the risk of potential failure modes.


2013 ◽  
Vol 819 ◽  
pp. 81-85
Author(s):  
Jing Tao Yue ◽  
Hui Pu ◽  
Xiang He Tao

Heavy general transport vehicles are recommended as lashing points during rescue operations of winch. Taking SX2190 heavy transport vehicles frame as the experimental object, this paper introduces contents and methods of the test, and gets evaluation result of the rear frame through finite element simulation and experimental validation of the real frame-towing hook system for winch lashing car.


Sign in / Sign up

Export Citation Format

Share Document