Calculation of the Time-Averaged Flow in Squirrel-Cage Blowers by Substituting Blades With Equivalent Forces

2008 ◽  
Vol 130 (3) ◽  
Author(s):  
Markus Tremmel ◽  
Dale B. Taulbee

Radial fans of the squirrel-cage type are used in various industrial applications. The analysis of such fans via computational fluid mechanics can provide the overall fan performance coefficients, as well as give insights into the detailed flow field. However, a transient simulation of a 3D machine using a sliding grid for the rotating blades still requires prohibitively large computational resources, with CPU run times in the order of months. To avoid such long simulation times, a faster method is developed in this paper. Instead of solving the transient Navier–Stokes equations, they are first averaged over one impeller rotation, and then solved for the mean flow since only this flow is of practical interest. Due to the averaging process, the blades disappear as solid boundaries, but additional equation terms arise, which represent the blade forces on the fluid. An innovative closure model for these terms is developed by calculating forces in 2D blade rows with the same blade geometry as the 3D machine for a range of flow parameters. These forces are then applied in the 3D machine, and the resulting 3D time-averaged flow field and performance coefficients are calculated. The 3D flow field showed several characteristic features of squirrel-cage blowers, such as a cross-flow pattern through the fan at low flow coefficients, and a vortexlike flow pattern at the fan outlet. The 3D fan performance coefficients showed an excellent agreement with experimental data. Since the 3D simulation solves for the mean flow, it can be run as a steady-state problem with a comparatively coarse grid in the blade region, reducing CPU times by a factor of about 10 when compared to a transient simulation with a sliding grid. It is hoped that these savings in computational cost will encourage other researchers and industrial companies to adopt the new method presented here.

1989 ◽  
Author(s):  
R. J. Kind ◽  
M. G. Tobin

This paper presents the results of performance measurements and detailed measurements of the mean flow field at rotor inlet and rotor exit in three squirrel cage fan configurations. The flow-field measurements were taken with a five-hole probe and yield total pressure, static pressure and the three components of velocity. Measurements were taken for two casing throat areas and for two different rotors. For each configuration the flow field was measured for flow rates below, near and above the best-efficiency point. Flow patterns are complex and there is reverse flow through the rotor blading even at the best-efficiency operating condition. Although complex, the main features of flow behaviour can be understood. They were common to all three fan configurations.


Author(s):  
Jannis Gikadi ◽  
Thomas Sattelmayer ◽  
Antonio Peschiulli

This paper presents a finite element methodology to predict the thermoacoustic eigenmodes of combustion chambers using the linearized Navier-Stokes equations (LNSE) in frequency space. The effect of the mean flow on the acoustics is accounted for. Besides scattering and refraction of acoustic waves in shear layers, this set of equation describes two main damping mechanisms. One is related to the generation of entropy waves, so called hot-spots, in flame regions. The other is related to the transformation of acoustic energy into vorticity waves at sharp leading or trailing edges. Both fluctuation types, i.e. entropy and vorticity, are convected by the mean flow, leading to significant damping when the fluid discharges into an open outlet. In combustion chamber environments these waves are accelerated in the downstream high pressure distributor and are partially transformed back into acoustic waves constituting to the feedback loop of thermo-acoustic instabilities. Accurate prediction of the eigenmodes and eigenfrequencies of instability require therefore to take these interaction effects into account. First, the accuracy of the LNSE approach, to capture the damping generated by the first mechanism of entropy generation and convection, is investigated for a generic premixed flame configuration. Solutions of the LNSE are compared to the analytic solutions as well as eigenvalues determined by an Helmholtz ansatz. Later methodology assumes a quiescent medium and neglects all interactions of acoustics with the mean flow. It is shown that large errors are introduced with increasing Mach-number. To illustrate errors assuming a quiescent medium for realistic combustion chambers, the LNSE are used to assess the eigenmodes of a two-dimensional aero-engine combustor including strong shear regions, in the next step. The non-isothermal mean flow field is obtained performing an incompressible RANS simulation. It features an expanding jet with inner and outer recirculation zones. The acoustic computations using LNSE reveal a set of unstable and neutral hydrodynamic modes in addition to acoustic modes. Both damping mechanisms are present and contribute to the overall system stability. Again the obtained solution is compared to the solution of an Helmholtz code and differences are discussed.


1990 ◽  
Vol 112 (1) ◽  
pp. 84-90 ◽  
Author(s):  
R. J. Kind ◽  
M. G. Tobin

This paper presents the results of performance measurements and detailed measurements of the mean flow field at rotor inlet and rotor exit in three squirrel-cage fan configurations. The flow-field measurements were taken with a five-hole probe and yield total pressure, static pressure, and the three components of velocity. Measurements were taken for two casing throat areas and for two different rotors. For each configuration the flow field was measured for flow rates below, near, and above the best-efficiency point. Flow patterns are complex and there is reverse flow through the rotor blading even at the best-efficiency operating condition. Although complex, the main features of flow behavior can be understood. They were common to all three fan configurations.


1985 ◽  
Vol 107 (4) ◽  
pp. 455-459 ◽  
Author(s):  
N. T. Obot ◽  
K. Adu-Wusu

Experiments were carried out to determine the pressure drop characteristics and mean velocity distributions in a scalene triangualr duct having two rounded corners. The present data for friction factor are adequately represented by the circular pipe line for laminar flow, but fall below the latter for turbulent flow. The mean flow field is highly asymmetric, the degree of asymmetry being more accentuated along lines parallel to the altitude than parallel to the base.


2011 ◽  
Vol 689 ◽  
pp. 97-128 ◽  
Author(s):  
K. Gudmundsson ◽  
Tim Colonius

AbstractPrevious work has shown that aspects of the evolution of large-scale structures, particularly in forced and transitional mixing layers and jets, can be described by linear and nonlinear stability theories. However, questions persist as to the choice of the basic (steady) flow field to perturb, and the extent to which disturbances in natural (unforced), initially turbulent jets may be modelled with the theory. For unforced jets, identification is made difficult by the lack of a phase reference that would permit a portion of the signal associated with the instability wave to be isolated from other, uncorrelated fluctuations. In this paper, we investigate the extent to which pressure and velocity fluctuations in subsonic, turbulent round jets can be described aslinearperturbations to the mean flow field. The disturbances are expanded about the experimentally measured jet mean flow field, and evolved using linear parabolized stability equations (PSE) that account, in an approximate way, for the weakly non-parallel jet mean flow field. We utilize data from an extensive microphone array that measures pressure fluctuations just outside the jet shear layer to show that, up to an unknown initial disturbance spectrum, the phase, wavelength, and amplitude envelope of convecting wavepackets agree well with PSE solutions at frequencies and azimuthal wavenumbers that can be accurately measured with the array. We next apply the proper orthogonal decomposition to near-field velocity fluctuations measured with particle image velocimetry, and show that the structure of the most energetic modes is also similar to eigenfunctions from the linear theory. Importantly, the amplitudes of the modes inferred from the velocity fluctuations are in reasonable agreement with those identified from the microphone array. The results therefore suggest that, to predict, with reasonable accuracy, the evolution of the largest-scale structures that comprise the most energetic portion of the turbulent spectrum of natural jets, nonlinear effects need only be indirectly accounted for by considering perturbations to the mean turbulent flow field, while neglecting any non-zero frequency disturbance interactions.


2001 ◽  
Vol 124 (1) ◽  
pp. 154-165 ◽  
Author(s):  
S. R. Maddah ◽  
H. H. Bruun

This paper presents results obtained from a combined experimental and computational study of the flow field over a multi-element aerofoil with and without an advanced slat. Detailed measurements of the mean flow and turbulent quantities over a multi-element aerofoil model in a wind tunnel have been carried out using stationary and flying hot-wire (FHW) probes. The model configuration which spans the test section 600mm×600mm, is made of three parts: 1) an advanced (heel-less) slat, 2) a NACA 4412 main aerofoil and 3) a NACA 4415 flap. The chord lengths of the elements were 38, 250 and 83 mm, respectively. The results were obtained at a chord Reynolds number of 3×105 and a free Mach number of less than 0.1. The variations in the flow field are explained with reference to three distinct flow field regimes: attached flow, intermittent separated flow, and separated flow. Initial comparative results are presented for the single main aerofoil and the main aerofoil with a nondeflected flap at angles of attacks of 5, 10, and 15 deg. This is followed by the results for the three-element aerofoil with emphasis on the slat performance at angles of attack α=10, 15, 20, and 25 deg. Results are discussed both for a nondeflected flap δf=0deg and a deflected flap δf=25deg. The measurements presented are combined with other related aerofoil measurements to explain the main interaction of the slat/main aerofoil and main aerofoil/flap both for nondeflected and deflected flap conditions. These results are linked to numerically calculated variations in lift and drag coefficients with angle of attack and flap deflection angle.


Author(s):  
Ruquan You ◽  
Haiwang Li ◽  
Zhi Tao ◽  
Kuan Wei

The mean flow field in a smooth rotating channel was measured by particle image velocimetry under the effect of buoyancy force. In the experiments, the Reynolds number, based on the channel hydraulic diameter (D) and the bulk mean velocity (Um), is 10000, and the rotation numbers are 0, 0.13, 0.26, 0.39, 0.52, respectively. The four channel walls are heated with Indium Tin Oxide (ITO) heater glass, making the density ratio (d.r.) about 0.1 and the maximum value of buoyancy number up to 0.27. The mean flow field was simulated on a 3D reconstruction at the position of 3.5<X/D<6.5, where X is along the mean flow direction. The effect of Coriolis force and buoyancy force on the mean flow was taken into consideration in the current work. The results show that the Coriolis force pushes the mean flow to the trailing side, making the asymmetry of the mean flow with that in the static conditions. On the leading surface, due to the effect of buoyancy force, the mean flow field changes considerably. Comparing with the case without buoyancy force, separated flow was captured by PIV on the leading side in the case with buoyancy force. More details of the flow field will be presented in this work.


Author(s):  
Alessio Firrito ◽  
Yannick Bousquet ◽  
Nicolas Binder ◽  
Ludovic Pintat

Abstract In recent years, lot of turbine research is focused on the study and optimization of inter-turbine ducts, an aero-engine component for which the design is becoming more challenging due to the turbofan architecture evolution. Starting from the early design phase, the knowledge of the component performance and outlet flow pattern is crucial in the design of the low pressure turbine. To improve prediction, multi-row unsteady simulations are deployed. Unfortunately, some questions arise in the use of these simulations, among others the knowledge of the turbulent boundary conditions and the contribution of the unsteady simulations to the flow solution. In this paper steady and time resolved RANS simulations of a turning inter-turbine duct are investigated. Particularly, two questions are addressed. The first one is the influence of the turbulent quantities boundary conditions in the case of a k–ω Wilcox turbulence model in the flow field solution. The second one is the contribution of the unsteadiness to the mean flow prediction. It will be shown that the mean flow depends on inlet turbulence only if the turbulence length scale is relatively high; otherwise the flow field is almost turbulence-invariant. For the unsteady simulations, unsteadiness modifies the mean flow solution only with low inlet turbulence.


Author(s):  
Stephen J. Wilkins ◽  
Joseph W. Hall

The unsteady flow field produced by a tandem cylinder system with the upstream cylinder yawed to the mean flow direction is investigated for upstream cylinder yaw angles from α = 60° to α = 90°. Multi-point fluctuating surface pressure and hotwire measurements were conducted at various spanwise positions on both the upstream and downstream cylinders. The results indicate that yawing the front cylinder to the mean flow direction causes the pressure and velocity spectra on the upstream and downstream cylinders to become more broadband than for a regular tandem cylinder system, and reduces the magnitude of the peak associated with the vortex-shedding. However, span-wise correlation and coherence measurements indicate that the vortex-shedding is still present and was being obscured by the enhanced three-dimensionality that the upstream yawed cylinder caused and was still present and correlated from front to back, at least for the larger yaw angles investigated. When the cylinder was yawed to α = 60°, the pressure fluctuations became extremely broadband and exhibited shorter spanwise correlation.


Sign in / Sign up

Export Citation Format

Share Document