Nonlinear Transverse Vibrations and 3:1 Internal Resonances of a Beam With Multiple Supports

2008 ◽  
Vol 130 (2) ◽  
Author(s):  
E. Özkaya ◽  
S. M. Bağdatlı ◽  
H. R. Öz

In this study, nonlinear transverse vibrations of an Euler–Bernoulli beam with multiple supports are considered. The beam is supported with immovable ends. The immovable end conditions cause stretching of neutral axis and introduce cubic nonlinear terms to the equations of motion. Forcing and damping effects are included in the problem. The general arbitrary number of support case is considered at first, and then 3-, 4-, and 5-support cases are investigated. The method of multiple scales is directly applied to the partial differential equations. Natural frequencies and mode shapes for the linear problem are found. The correction terms are obtained from the last order of expansion. Nonlinear frequencies are calculated and then amplitude and phase modulation figures are presented for different forcing and damping cases. The 3:1 internal resonances are investigated. External excitation frequency is applied to the first mode and responses are calculated for the first or second mode. Frequency-response and force-response curves are drawn.

Author(s):  
Mohammad A. Bukhari ◽  
Oumar R. Barry

This paper presents the nonlinear vibration of a simply supported Euler-Bernoulli beam with a mass-spring system subjected to a primary resonance excitation. The nonlinearity is due to the mid-plane stretching and cubic spring stiffness. The equations of motion and the boundary conditions are derived using Hamiltons principle. The nonlinear system of equations are solved using the method of multiple scales. Explicit expressions are obtained for the mode shapes, natural frequencies, nonlinear frequencies, and frequency response curves. The validity of the results is demonstrated via comparison with results in the literature. Exact natural frequencies are obtained for different locations, rotational inertias, and masses.


2021 ◽  
Author(s):  
Yuji Harata ◽  
Takashi Ikeda

Abstract This study investigates localization phenomena in two identical nonlinear tuned mass dampers (TMDs) installed on an elastic structure, which is subjected to external, harmonic excitation. In the theoretical analysis, the mode shapes of the system are determined, and the modal equations of motion are derived using modal analysis. These equations are demonstrated as forming an autoparametric system in which external excitation directly acts on the first and third vibration modes, whereas the second vibration mode is indirectly excited due to the nonlinear coupling with the other modes. Van der Pol’s method is employed to obtain the frequency response curves for both physical and modal coordinates. The two TMDs vibrate in phase for the first and third modes, but vibrate out of phase for the second mode. Consequently, when all modes appear, the two TMDs may vibrate at different amplitudes, i.e., localization phenomena may occur because the TMD motions are expressed by the summation of motions for all modes. The numerical calculations clarify that the localization phenomena may occur in the two TMDs when all three modes appear simultaneously. Moreover, there are two steady-state solutions of the harmonic oscillations for the second mode with identical amplitudes; however, their phases differ by π. Hence, which TMD vibrates at higher amplitudes depends on which of these two steady-state solutions for the phase.


2021 ◽  
Vol 11 (20) ◽  
pp. 9486
Author(s):  
Andrea Arena

The nonlinear dynamic features of compression roller batteries were investigated together with their nonlinear response to primary resonance excitation and to internal interactions between modes. Starting from a parametric nonlinear model based on a previously developed Lagrangian formulation, asymptotic treatment of the equations of motion was first performed to characterize the nonlinearity of the lowest nonlinear normal modes of the system. They were found to be characterized by a softening nonlinearity associated with the stiffness terms. Subsequently, a direct time integration of the equations of motion was performed to compute the frequency response curves (FRCs) when the system is subjected to direct harmonic excitations causing the primary resonance of the lowest skew-symmetric mode shape. The method of multiple scales was then employed to study the bifurcation behavior and deliver closed-form expressions of the FRCs and of the loci of the fold bifurcation points, which provide the stability regions of the system. Furthermore, conditions for the onset of internal resonances between the lowest roller battery modes were found, and a 2:1 resonance between the third and first modes of the system was investigated in the case of harmonic excitation having a frequency close to the first mode and the third mode, respectively.


Author(s):  
Kyoyul Oh ◽  
Ali H. Nayfeh

Abstract We experimentally investigated nonlinear combination resonances in a graphite-epoxy cantilever plate having the configuration (–75/75/75/ – 75/75/ – 75)s. As a first step, we compared the natural frequencies and mode shapes obtained from the finite-element and experimental modal analyses. The largest difference in the obtained frequencies was 2.6%. Then, we transversely excited the plate and obtained force-response and frequency-response curves, which were used to characterize the plate dynamics. We acquired time-domain data for specific input conditions using an A/D card and used them to generate time traces, power spectra, pseudo-state portraits, and Poincaré maps. The data were obtained with an accelerometer monitoring the excitation and a laser vibrometer monitoring the plate response. We observed the external combination resonance Ω≈12(ω2+ω5) and the internal combination resonance Ω≈ω8≈12(ω2+ω13), where the ωi are the natural frequencies of the plate and Ω is the excitation frequency. The results show that a low-amplitude high-frequency excitation can produce a high-amplitude low-frequency motion.


2017 ◽  
Vol 17 (04) ◽  
pp. 1750047 ◽  
Author(s):  
Yi-Ren Wang ◽  
Li-Ping Wu

This paper studies the vibration of a nonlinear 3D-string fixed at both ends and supported by a nonlinear elastic foundation. Newton’s second law is adopted to derive the equations of motion for the string resting on an elastic foundation. Then, the method of multiple scales (MOMS) is employed for the analysis of the nonlinear system. It was found that 1:3 internal resonance exists in the first and fourth modes of the string when the wave speed in the transverse direction is [Formula: see text] and the elasticity coefficient of the foundation is [Formula: see text]. Fixed point plots are used to obtain the frequency responses of the various modes and to identify internal resonance through observation of the amplitudes and mode shapes. To prevent internal resonance and reduce vibration, a tuned mass damper (TMD) is applied to the string. The effects of various TMD masses, locations, damper coefficients ([Formula: see text]), and spring constants ([Formula: see text]) on overall damping were analyzed. The 3D plots of the maximum amplitude (3D POMAs) and 3D maximum amplitude contour plots (3D MACPs) are generated for the various modes to illustrate the amplitudes of the string, while identifying the optimal TMD parameters for vibration reduction. The results were verified numerically. It was concluded that better damping effects can be achieved using a TMD mass ratio [Formula: see text]–0.5 located near the middle of the string. Furthermore, for damper coefficient [Formula: see text], the use of spring constant [Formula: see text]–13 can improve the overall damping.


2002 ◽  
Vol 8 (3) ◽  
pp. 337-387 ◽  
Author(s):  
Ali H. Nayfeh ◽  
Haider N. Arafat ◽  
Char-Ming Chin ◽  
Walter Lacarbonara

We investigate the nonlinear nonplanar responses of suspended cables to external excitations. The equations of motion governing such systems contain quadratic and cubic nonlinearities, which may result in two-to-one and one-to-one internal resonances. The sag-to-span ratio of the cable considered is such that the natural frequency of the first symmetric in-plane mode is at first crossover. Hence, the first symmetric in-plane mode is involved in a one-to-one internal resonance with the first antisymmetric in-plane and out-of-plane modes and, simultaneously, in a two-to-one internal resonance with the first symmetric out-of-plane mode. Under these resonance conditions, we analyze the response when the first symmetric in-plane mode is harmonically excited at primary resonance. First, we express the two governing equations of motion as four first-order (i.e., state-space formulation) partial-differential equations. Then, we directly apply the methods of multiple scales and reconstitution to determine a second-order uniform asymptotic expansion of the solution, including the modulation equations governing the dynamics of the phases and amplitudes of the interacting modes. Then, we investigate the behavior of the equilibrium and dynamic solutions as the forcing amplitude and resonance detunings are slowly varied and determine the bifurcations they may undergo.


Author(s):  
Andrea Arena ◽  
Walter Lacarbonara ◽  
Matthew P Cartmell

Nonlinear dynamic interactions in harbour quayside cranes due to a two-to-one internal resonance between the lowest bending mode of the deformable boom and the in-plane pendular mode of the container are investigated. To this end, a three-dimensional model of container cranes accounting for the elastic interaction between the crane boom and the container dynamics is proposed. The container is modelled as a three-dimensional rigid body elastically suspended through hoisting cables from the trolley moving along the crane boom modelled as an Euler-Bernoulli beam. The reduced governing equations of motion are obtained through the Euler-Lagrange equations employing the boom kinetic and stored energies, derived via a Galerkin discretisation based on the mode shapes of the two-span crane boom used as trial functions, and the kinetic and stored energies of the rigid body container and the elastic hoisting cables. First, conditions for the onset of internal resonances between the boom and the container are found. A higher order perturbation treatment of the Taylor expanded equations of motion in the neighbourhood of a two-to-one internal resonance between the lowest boom bending mode and the lowest pendular mode of the container is carried out. Continuation of the fixed points of the modulation equations together with stability analysis yields a rich bifurcation behaviour, which features Hopf bifurcations. It is shown that consideration of higher order terms (cubic nonlinearities) beyond the quadratic geometric and inertia nonlinearities breaks the symmetry of the bifurcation equations, shifts the bifurcation points and the stability ranges, and leads to bifurcations not predicted by the low order analysis.


2014 ◽  
Vol 532 ◽  
pp. 316-319 ◽  
Author(s):  
Ferid Köstekci

The aim of this paper is to examine the natural frequencies of beams for different flexural stiffness, internal simple support locations and axial moving speed. In the present investigation, the linear transverse vibrations of an axially translating beam are considered based on Euler-Bernoulli model. The beam is passing through two frictionless guides and has an internal simple support between the guides. The governing differential equations of motion are derived using Hamiltons Principle for two regions of the beam. The method of multiple scales is employed to obtain approximate analytical solution. Some numerical calculations are conducted to present the effects of flexural rigidity, mean translating speed and different internal support locations on natural frequencies.


Author(s):  
Tao Liu ◽  
Wei Zhang ◽  
Yan Zheng ◽  
Yufei Zhang

Abstract This paper is focused on the internal resonances and nonlinear vibrations of an eccentric rotating composite laminated circular cylindrical shell subjected to the lateral excitation and the parametric excitation. Based on Love thin shear deformation theory, the nonlinear partial differential equations of motion for the eccentric rotating composite laminated circular cylindrical shell are established by Hamilton’s principle, which are derived into a set of coupled nonlinear ordinary differential equations by the Galerkin discretization. The excitation conditions of the internal resonance is found through the Campbell diagram, and the effects of eccentricity ratio and geometric papameters on the internal resonance of the eccentric rotating system are studied. Then, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equations in the case of 1:2 internal resonance and principal parametric resonance-1/2 subharmonic resonance. Finally, we study the nonlinear vibrations of the eccentric rotating composite laminated circular cylindrical shell systems.


2018 ◽  
Vol 10 (07) ◽  
pp. 1850076 ◽  
Author(s):  
Feng Liang ◽  
Xiao-Dong Yang ◽  
Wei Zhang ◽  
Ying-Jing Qian

Drill strings are one of the most significant rotor components employed in oil and gas exploitation. In this paper, an improved dynamical model of drill-string-like pipes conveying fluid is developed by taking into account the axial spin, fluid–structure interaction (FSI), damping as well as curvature and inertia nonlinearities. The partial differential equations of motion are derived by two sequential Euler angles and the Hamilton principle and then directly handled by the multiple scales method. The nonlinear amplitudes, frequencies and whirling mode shapes are all investigated towards various system parameters to display the nonlinear dynamical characteristics of such a special rotor system coupled with FSI. It is revealed that the nonlinear amplitudes and frequencies are explicitly dependent on the spinning speed, while the flowing fluid mainly contributes to the linear frequencies, and consequently influences the nonlinear amplitudes and frequencies. The FSI effect and axial spin can both improve the forward procession mode and suppress the backward one, while both procession modes will be suppressed by the viscoelastic damping. The pipe will ultimately present a forward as well as decayed whirling motion for the fundamental mode.


Sign in / Sign up

Export Citation Format

Share Document