Effects of Flexural Stiffness, Axial Velocity and Internal Support Locations on Translating Beam’s Natural Frequencies

2014 ◽  
Vol 532 ◽  
pp. 316-319 ◽  
Author(s):  
Ferid Köstekci

The aim of this paper is to examine the natural frequencies of beams for different flexural stiffness, internal simple support locations and axial moving speed. In the present investigation, the linear transverse vibrations of an axially translating beam are considered based on Euler-Bernoulli model. The beam is passing through two frictionless guides and has an internal simple support between the guides. The governing differential equations of motion are derived using Hamiltons Principle for two regions of the beam. The method of multiple scales is employed to obtain approximate analytical solution. Some numerical calculations are conducted to present the effects of flexural rigidity, mean translating speed and different internal support locations on natural frequencies.

Author(s):  
Dumitru I. Caruntu

This paper deals with transverse vibrations of axisymmetrical annular plates of concave parabolic thickness. A closed-form solution of the partial differential equation of motion is reported. An approach in which both method of multiple scales and method of factorization have been employed is presented. The method of multiple scales is used to reduce the partial differential equation of motion to two simpler partial differential equations that can be analytically solved. The solutions of the two differential equations are two levels of approximation of the exact solution of the problem. Using the factorization method for solving the first differential equation, which is homogeneous and includes a fourth-order spatial-dependent operator and second-order time-dependent operator, the general solution is obtained in terms of hypergeometric functions. The first diferential equation and the second differential equation (nonhomogeneous) along with the given boundary conditions give so-called zero-order and first-order approximations, respectively, of the natural frequencies and mode shapes. Any boundary conditions could be considered. The influence of Poisson’s ratio on the natural frequencies and mode shapes could be further studied using the first-order approximations reported here. This approach can be extended to nonlinear, and/or forced vibrations.


2015 ◽  
Vol 801 ◽  
pp. 129-135
Author(s):  
Şafak Aksoy ◽  
Ferid Kostekci

In this study, linear vibrations of axially moving beam simply supported between the guides are examined and natural frequencies are calculated numerically. The vibrations of axially tensioned Euler-Bernoulli beam are investigated under clamped-clamped end conditions. Governing differential equations of motion are derived using Hamilton’s Principle for two regions of the beam. The boundaries at the outer ends of the beam are assumed immovable. Non-dimensional equations of motion are derived and the solutions of the linear problem are obtained. Assuming a weakly non-linear system, linear equations are obtained using the Method of Multiple Scales. First seven natural frequencies are calculated numerically based on the flexural rigidity, axial velocity and locations of the intermediate support.


Author(s):  
Mohammad A. Bukhari ◽  
Oumar R. Barry

This paper presents the nonlinear vibration of a simply supported Euler-Bernoulli beam with a mass-spring system subjected to a primary resonance excitation. The nonlinearity is due to the mid-plane stretching and cubic spring stiffness. The equations of motion and the boundary conditions are derived using Hamiltons principle. The nonlinear system of equations are solved using the method of multiple scales. Explicit expressions are obtained for the mode shapes, natural frequencies, nonlinear frequencies, and frequency response curves. The validity of the results is demonstrated via comparison with results in the literature. Exact natural frequencies are obtained for different locations, rotational inertias, and masses.


1991 ◽  
Vol 05 (13) ◽  
pp. 2237-2252 ◽  
Author(s):  
ZHU-PEI SHI ◽  
GUOXING HUANG ◽  
RUIBAO TAO

We have studied the localization of multivibrational states in diatomic nonlinear lattice chain. A simple model Hamiltonian presented here describes a system containing two kinds of phonons. The equations of motion for these boson operators are two partial differential equations with nonlinear coupling in long-wave approximation. With the help of the method of multiple scales, these equations are reduced to the nonlinear Schrödinger equation. It is shown that soliton-like phonon localized modes, multi-phonon localized modes can exist. The possibility of observing the gap solitons (phonon localized modes in the frequency gap) in diatomic nonlinear lattice chain is predicted.


Author(s):  
Hadj Youzera ◽  
Sid Ahmed Meftah ◽  
El Mostafa Daya

General differential equations of motion in nonlinear forced vibration analysis of multilayered composite beams are derived by using the higher-order shear deformation theories (HSDT's). Viscoelastic properties of fiber-reinforced plastic composite materials are considered according to the Kelvin–Voigt viscoelastic model for transversely isotropic composite materials. The method of multiple scales is employed to perform analytical frequency amplitude relationships for superharmonic resonance. Parametric study is conducted by considering various geometrical and material parameters, employing HSDT's and first-order deformation theory (FSDT).


Author(s):  
M. Saghafi ◽  
H. Dankowicz ◽  
W. Lacarbonara

This paper investigates the development of a novel framework and its implementation for the nonlinear tuning of nano/microresonators. Using geometrically exact mechanical formulations, a nonlinear model is obtained that governs the transverse and longitudinal dynamics of multilayer microbeams, and also takes into account rotary inertia effects. The partial differential equations of motion are discretized, according to the Galerkin method, after being reformulated into a mixed form. A zeroth-order shift as well as a hardening effect are observed in the frequency response of the beam. These results are confirmed by a higher order perturbation analysis using the method of multiple scales. An inverse problem is then proposed for the continuation of the critical amplitude at which the transition to nonlinear response characteristics occurs. Path-following techniques are employed to explore the dependence on the system parameters, as well as on the geometry of bilayer microbeams, of the magnitude of the dynamic range in nano/microresonators.


Author(s):  
Haider N. Arafat ◽  
Ali H. Nayfeh

The forced nonlinear dynamics of a pre-buckled thermally loaded annular plate are investigated. The plate is modeled using the von Ka´rma´n plate theory and the heat equation. The heat, which is generated by the difference between the uniformly distributed temperatures at the inner and outer boundaries, is assumed to symmetrically flow in the radial direction. The amount of heat affects the natural frequencies, which may give rise to different internal resonance conditions. The method of multiple scales is used to examine the system axisymmetric responses when it is driven by an external multi-frequency excitation. The plate responses could be very complex exhibiting Hopf and cyclic-fold bifurcations, quasi-periodicity, chaos, and multiplicity of attractors.


2019 ◽  
Vol 29 (10) ◽  
pp. 1950132
Author(s):  
Hua-Zhen An ◽  
Xiao-Dong Yang ◽  
Feng Liang ◽  
Wei Zhang ◽  
Tian-Zhi Yang ◽  
...  

In this paper, we investigate systematically the vibration of a typical 2DOF nonlinear system with repeated linearized natural frequencies. By application of Descartes’ rule of signs, we demonstrate that there are 14 types of roots describing different modal motions for varying nonlinear parameters. The method of multiple scales is used to obtain the amplitude-phase portraits by introducing the energy ratios and phase differences. The typical nonlinear in-unison and elliptic out-of-unison modal motions are located for the 14 types of roots and then validated by numerical simulations. It is found that the normal in-unison modal motions, elliptic out-of-unison modal motions are analogous to the polarization of classical optic theory. Further, some kinds of periodic and chaotic motions under out-of-unison and in-unison excitations are investigated numerically. The result of this study offers a detailed discussion of nonlinear modal motions and responses of 2DOF systems with cubic nonlinear terms.


1998 ◽  
Vol 5 (5-6) ◽  
pp. 277-288 ◽  
Author(s):  
Ali H. Nayfeh ◽  
Haider N. Arafat

The nonlinear planar response of cantilever metallic beams to combination parametric and external subcombination resonances is investigated, taking into account the effects of cubic geometric and inertia nonlinearities. The beams considered here are assumed to have large length-to-width aspect ratios and thin rectangular cross sections. Hence, the effects of shear deformations and rotatory inertia are neglected. For the case of combination parametric resonance, a two-mode Galerkin discretization along with Hamilton’s extended principle is used to obtain two second-order nonlinear ordinary-differential equations of motion and associated boundary conditions. Then, the method of multiple scales is applied to obtain a set of four first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the two excited modes. For the case of subcombination resonance, the method of multiple scales is applied directly to the Lagrangian and virtual-work term. Then using Hamilton’s extended principle, we obtain a set of four first-order nonlinear ordinary-differential equations governing the amplitudes and phases of the two excited modes. In both cases, the modulation equations are used to generate frequency- and force-response curves. We found that the trivial solution exhibits a jump as it undergoes a subcritical pitchfork bifurcation. Similarly, the nontrivial solutions also exhibit jumps as they undergo saddle-node bifurcations.


2008 ◽  
Vol 130 (2) ◽  
Author(s):  
E. Özkaya ◽  
S. M. Bağdatlı ◽  
H. R. Öz

In this study, nonlinear transverse vibrations of an Euler–Bernoulli beam with multiple supports are considered. The beam is supported with immovable ends. The immovable end conditions cause stretching of neutral axis and introduce cubic nonlinear terms to the equations of motion. Forcing and damping effects are included in the problem. The general arbitrary number of support case is considered at first, and then 3-, 4-, and 5-support cases are investigated. The method of multiple scales is directly applied to the partial differential equations. Natural frequencies and mode shapes for the linear problem are found. The correction terms are obtained from the last order of expansion. Nonlinear frequencies are calculated and then amplitude and phase modulation figures are presented for different forcing and damping cases. The 3:1 internal resonances are investigated. External excitation frequency is applied to the first mode and responses are calculated for the first or second mode. Frequency-response and force-response curves are drawn.


Sign in / Sign up

Export Citation Format

Share Document