A Pressure Projection Method for Nearly Incompressible Rubber Hyperelasticity, Part I: Theory

1996 ◽  
Vol 63 (4) ◽  
pp. 862-868 ◽  
Author(s):  
Jiun-Shyan Chen ◽  
Chunhui Pan

A least-squares-based pressure projection method is proposed for the nonlinear analysis of nearly incompressible hyperelastic materials. The strain energy density function is separated into distortional and dilatational parts by the use of Penn’s invariants such that the hydrostatic pressure is solely determined from the dilatational strain energy density. The hydrostatic pressure and hydrostatic pressure increment calculated from displacements are projected onto appropriate pressure fields through the least-squares method. The method is applicable to lower and higher order elements and the projection procedures can be implemented into the displacement based nonlinear finite element program. By the use of certain pressure interpolation functions and reduced integration rules in the pressure projection equations, this method can be degenerated to a nonlinear version of the selective reduced integration method.

1996 ◽  
Vol 63 (4) ◽  
pp. 869-876 ◽  
Author(s):  
Jiun-Shyan Chen ◽  
Cheng-Tang Wu ◽  
Chunhui Pan

In the first part of this paper a pressure projection method was presented for the nonlinear analysis of structures made of nearly incompressible hyperelastic materials. The main focus of the second part of the paper is to demonstrate the performance of the present method and to address some of the issues related to the analysis of engineering elastomers including the proper selection of strain energy density functions. The numerical procedures and the implementation to nonlinear finite element programs are presented. Mooney-Rivlin, Cubic, and Modified Cubic strain energy density functions are used in the numerical examples. Several classical finite elasticity problems as well as some practical engineering elastomer problems are analyzed. The need to account for the slight compressibility of rubber (finite bulk modulus) in the finite element formulation is demonstrated in the study of apparent Young’s modulus of bonded thin rubber units. The combined shear-bending deformation that commonly exists in rubber mounting systems is also analyzed and discussed.


2018 ◽  
Vol 6 (4) ◽  
Author(s):  
Tawakol Ahmed Enab ◽  
Hasnaa W. Taha ◽  
Mohamed A. N. Shabara ◽  
Ahmed M. Galal

The crack growth in metallic materials using fast and reliable simulations of 2-D and linear elastic finite element models is investigated. The effect of the stress intensity factor in mode I and II (KI, KII) on the fracture behavior of stainless steel and the associated strain energy density factor in mixed mode crack propagation were studied numerically to determine crack propagation angle θ in linear elastic fracture investigation. In order to implement the determination of the crack propagation direction using the strain energy density criterion S, the numerical finite element program ANSYS was used. ANSYS APDL macros were developed to generate the geometry, material properties, boundary conditions and mesh size of the model for the conducted analyses. To demonstrate the capability of crack propagation trajectories using the proposed method under mixed mode situation, an edge crack specimen was considered with initial crack having the same length but at different inclination angles under a uniaxial tension load. Results obtained from the developed models had a good agreement (average deviation of 4.63%) with the results available in the literatures.


2020 ◽  
Vol 28 ◽  
pp. 734-742
Author(s):  
Pietro Foti ◽  
Seyed Mohammad Javad Razavi ◽  
Liviu Marsavina ◽  
Filippo Berto

2021 ◽  
Vol 230 ◽  
pp. 111716
Author(s):  
Pietro Foti ◽  
Seyed Mohammad Javad Razavi ◽  
Majid Reza Ayatollahi ◽  
Liviu Marsavina ◽  
Filippo Berto

Author(s):  
Mircea Bîrsan

AbstractIn this paper, we present a general method to derive the explicit constitutive relations for isotropic elastic 6-parameter shells made from a Cosserat material. The dimensional reduction procedure extends the methods of the classical shell theory to the case of Cosserat shells. Starting from the three-dimensional Cosserat parent model, we perform the integration over the thickness and obtain a consistent shell model of order $$ O(h^5) $$ O ( h 5 ) with respect to the shell thickness h. We derive the explicit form of the strain energy density for 6-parameter (Cosserat) shells, in which the constitutive coefficients are expressed in terms of the three-dimensional elasticity constants and depend on the initial curvature of the shell. The obtained form of the shell strain energy density is compared with other previous variants from the literature, and the advantages of our constitutive model are discussed.


2014 ◽  
Vol 1679 ◽  
Author(s):  
O.G. Súchil ◽  
G. Abadal ◽  
F. Torres

ABSTRACTSelf-powered microsystems as an alternative to standard systems powered by electrochemical batteries are taking a growing interest. In this work, we propose a different method to store the energy harvested from the ambient which is performed in the mechanical domain. Our mechanical storage concept is based on a spring which is loaded by the force associated to the energy source to be harvested [1]. The approach is based on pressing an array of fine wires (fws) grown vertically on a substrate surface. For the fine wires based battery, we have chosen ZnO fine wires due the fact that they could be grown using a simple and cheap process named hydrothermal method [2]. We have reported previous experiments changing temperature and initial pH of the solution in order to determine the best growth [3]. From new experiments done varying the compounds concentration the best results of fine wires were obtained. To characterize these fine wires we have considered that the maximum load we can apply to the system is limited by the linear buckling of the fine wires. From the best results we obtained a critical strain of εc = 3.72 % and a strain energy density of U = 11.26 MJ/m3, for a pinned-fixed configuration [4].


2010 ◽  
Vol 452-453 ◽  
pp. 441-444 ◽  
Author(s):  
Tomáš Profant ◽  
Jan Klusák ◽  
Michal Kotoul

The bi-material notch composed of two orthotropic parts is considered. The radial and tangential stresses and strain energy density is expressed using the Stroh-Eshelby-Lekhnitskii formalism for the plane elasticity. The potential direction of the crack initiation is determined from the maximum mean value of the tangential stresses and local minimum of the mean value of the generalized strain energy density factor in both materials. Matched asymptotic procedure is used to derive the change of potential energy for the debonding crack and the crack initiated in the determined direction.


Author(s):  
Sergio Cicero ◽  
Francisco Ibáñez ◽  
Isabela Procopio ◽  
Virginia Madrazo

This paper presents the application of the Strain Energy Density (SED) criterion to the estimation of fracture loads on structural steel S355J2 operating at lower shelf temperatures (−196°C) and containing U-shaped notches. 24 fracture tests were performed on this material, combining 6 different notch radii: 0 mm (crack-like defect), 0.15 mm, 0.25 mm, 0.50 mm, 1.0 mm and 2.0 mm. The results obtained in cracked specimens (0 mm notch radius) were used to determine the material fracture toughness, which is an input parameter in the SED criterion, whereas the notched specimens were used to demonstrate the capacity and the limitations of the SED criterion to provide fracture load estimations in the analyzed conditions.


Sign in / Sign up

Export Citation Format

Share Document