Three-Dimensional Creep Analysis of Solder Joints in Surface Mount Devices

1995 ◽  
Vol 117 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Pardeep K. Bhatti ◽  
Klaus Gschwend ◽  
Abel Y. Kwang ◽  
Ahmer R. Syed

Three-dimensional finite element analysis has been applied for determining time-dependent solder joint response of leaded surface mount components under thermal cycling. Two main challenges are the geometric complexity in mesh development and computationally intensive analysis because of the highly nonlinear material properties. Advanced techniques have been applied, including multi-point constraints for mesh transition, which reduces the number of degrees of freedom in the model, and substructuring, which effectively reduces computational time in the iterative analysis. The result is a generic approach for nonlinear creep analysis using commercial FEA software on a high performance workstation. Illustrations are provided for J and gullwing leaded packages.

2013 ◽  
Vol 834-836 ◽  
pp. 1497-1500
Author(s):  
Jian Xiang Tang ◽  
Xin Hua Jiang ◽  
Jiang Min Deng ◽  
Te Fang Chen

In this paper, electromagnetic dynamic characteristics of suspension system of middle-low speed maglev train are analyzed with finite element analysis (FEA) method based on the high-performance computing platform (HPC). The couple structure between F-type track and suspension magnet is meshed by pretension element. The dynamic characteristics of suspension system are simulated in three-dimensional model with 4 degrees of freedom motions condition. Both the numerical simulations and the actual force tests of suspension system are carried out with the same input. The result shows that the calculation accuracy of finite element analysis is high.


Author(s):  
D. Liu ◽  
S. Koric ◽  
A. Kontsos

Direct numerical simulations (DNS) of knitted textile mechanical behavior are for the first time conducted on high performance computing (HPC) using both the explicit and implicit finite element analysis (FEA) to directly assess effective ways to model the behavior of such complex material systems. Yarn-level models including interyarn interactions are used as a benchmark computational problem to enable direct comparison in terms of computational efficiency between explicit and implicit methods. The need for such comparison stems from both a significant increase in the degrees-of-freedom (DOFs) with increasing size of the computational models considered as well as from memory and numerical stability issues due to the highly complex three-dimensional (3D) mechanical behavior of such 3D architectured materials. Mesh and size dependency, as well as parallelization in an HPC environment are investigated. The results demonstrate a satisfying accuracy combined with higher computational efficiency and much less memory requirements for the explicit method, which could be leveraged in modeling and design of such novel materials.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


Author(s):  
Sergey Pisetskiy ◽  
Mehrdad Kermani

This paper presents an improved design, complete analysis, and prototype development of high torque-to-mass ratio Magneto-Rheological (MR) clutches. The proposed MR clutches are intended as the main actuation mechanism of a robotic manipulator with five degrees of freedom. Multiple steps to increase the toque-to-mass ratio of the clutch are evaluated and implemented in one design. First, we focus on the Hall sensors’ configuration. Our proposed MR clutches feature embedded Hall sensors for the indirect torque measurement. A new arrangement of the sensors with no effect on the magnetic reluctance of the clutch is presented. Second, we improve the magnetization of the MR clutch. We utilize a new hybrid design that features a combination of an electromagnetic coil and a permanent magnet for improved torque-to-mass ratio. Third, the gap size reduction in the hybrid MR clutch is introduced and the effect of such reduction on maximum torque and the dynamic range of MR clutch is investigated. Finally, the design for a pair of MR clutches with a shared magnetic core for antagonistic actuation of the robot joint is presented and experimentally validated. The details of each approach are discussed and the results of the finite element analysis are used to highlight the required engineering steps and to demonstrate the improvements achieved. Using the proposed design, several prototypes of the MR clutch with various torque capacities ranging from 15 to 200 N·m are developed, assembled, and tested. The experimental results demonstrate the performance of the proposed design and validate the accuracy of the analysis used for the development.


2010 ◽  
Vol 77 (6) ◽  
Author(s):  
M. Jafari ◽  
M. J. Mahjoob

In this paper, the exact stiffness matrix of curved beams with nonuniform cross section is derived using direct method. The considered element has two nodes and 12 degrees of freedom, with three forces and three moments applied at each node. The noncoincidence effect of shear center and center of area is also considered in this element. The deformations of the beam are due to bending, torsion, tensile, and shear loads. The line passing through center of area is a general three-dimensional curve and the cross section properties may change arbitrarily along it. The method is extended to deal with distributed loads on the curved beams. The stiffness matrix of some selected types of beams is determined by this method. The results are compared (where possible) with previously published results, simple beam finite element analysis and analytic solution. It is shown that the determined stiffness matrix is exact and that any type of beam can be analyzed by this method.


Author(s):  
Jifeng Wang ◽  
Qubo Li ◽  
Norbert Mu¨ller

A mechanical and optimal analyses procedure is developed to assess the stresses and deformations of Novel Wound Composite Axial-Impeller under loading conditions particular to centrifuge. This procedure is based on an analytical method and Finite Element Analysis (FEA, commercial software ANSYS) results. A low-cost, light-weight, high-performance, composite turbomachinery impeller from differently designed patterns will be evaluated. Such impellers can economically enable refrigeration plants using water as a refrigerant (R718). To create different complex patterns of impellers, MATLAB is used for creating the geometry of impellers, and CAD software UG is used to build three-dimensional impeller models. Available loading conditions are: radial body force due to high speed rotation about the cylindrical axis and fluid forces on each blade. Two-dimensional plane stress and three-dimensional stress finite element analysis are carried out using ANSYS to validate these analytical mechanical equations. The von Mises stress is investigated, and maximum stress and Tsai-Wu failure criteria are applied for composite material failure, and they generally show good agreement.


Author(s):  
Li-Ping Yang ◽  
Shin-Min Song

Abstract This paper presents a computer method to simulate the quasi-static motion of hanging cables on robots. The shape of the flexible cable is changing during motion and the finite segment method is applied to determine its configuration. The cable is modeled as a series of rigid segments segments connected together through revolute joints in 2-D case and spherical joints in 3-D case. The elasticity of cable is represented by torsional springs at the joints. In both cases, a set of highly nonlinear equations are derived based on force equilibrium and the Newton-Raphson method is applied to calculate the solution. In order to assure convergence and improve computational efficiency, the parameter perturbation method is applied together with the Newton-Raphson method. Also, some computational strategies are developed to simplify the three dimensional problem. Finally, the developed methods are demonstrated in displaying the motion of a hanging cable which is attached to a revolute joint, a prismatic joint and a three degrees of freedom robot.


2019 ◽  
Vol 86 (10) ◽  
Author(s):  
Hamed Farokhi ◽  
Mergen H. Ghayesh

Abstract This paper investigates the nonlinear static response as well as nonlinear forced dynamics of a clamped–clamped beam actuated by piezoelectric patches partially covering the beam from both sides. This study is the first to develop a high-dimensional nonlinear model for such a piezoelectric-beam configuration. The nonlinear dynamical resonance characteristics of the electromechanical system are examined under simultaneous DC and AC piezoelectric actuations, while highlighting the effects of modal energy transfer and internal resonances. A multiphysics coupled model of the beam-piezoelectric system is proposed based on the nonlinear beam theory of Bernoulli–Euler and the piezoelectric constitutive equations. The discretized model of the system is obtained with the help of the Galerkin weighted residual technique while retaining 32 degrees-of-freedom. Three-dimensional finite element analysis is conducted as well in the static regime to validate the developed model and numerical simulation. It is shown that the response of the system in the nonlinear resonant region is strongly affected by a three-to-one internal resonance.


Author(s):  
Chris Salisbury

A novel three-dimensional robotic surface is devised using triangular modules connected by revolute joints that mimic the constraints of a spherical joint at each triangle intersection. The finite element method (FEM) is applied to the dynamic loading of this device using three dimensional (6 degrees of freedom) beam elements to not only calculate the cartesian displacement and force, but also the angular displacement and torque at each joint. In this way, the traditional methods of finding joint forces and torques are completely bypassed. An effiecient algorithm is developed to linearly combine local mass and stiffness matrices into a full structural stiffness matrix for the easy application of loads. An analysis of optimal dynamic joint forces is carried out in Simulink® with the use of an algebraic Ricatti equation.


1989 ◽  
Vol 4 (1) ◽  
pp. 25-42 ◽  
Author(s):  
A.R. Kukreti ◽  
N.D. Uchil

In this paper an alternative method for dynamic response analysis of large space structures is presented, for which conventional finite element analysis would require excessive computer storage and computational time. Latticed structures in which the height is very small in comparison to its overall length and width are considered. The method is based on the assumption that the structure can be embedded in its continuum, in which any fiber can translate and rotate without deforming. An appropriate kinematically admissable series function is constructed to descrbe the deformation of the middle plane of this continuum. The unknown coefficients in this function are called the degree-of-freedom of the continuum, which is given the name “super element.” Transformation matrices are developed to express the equations of motion of the actual systems in terms of the degrees-of-freedom of the super element. Thus, by changing the number of terms in the assumed function, the degrees-of-freedom of the super element can be increased or decreased. The super element response results are transformed back to obtain the desired response results of the actual system. The method is demonstrated for a structure woven in the shape of an Archimedian spiral.


Sign in / Sign up

Export Citation Format

Share Document