scholarly journals High-performance magneto-rheological clutches for direct-drive actuation: Design and development

Author(s):  
Sergey Pisetskiy ◽  
Mehrdad Kermani

This paper presents an improved design, complete analysis, and prototype development of high torque-to-mass ratio Magneto-Rheological (MR) clutches. The proposed MR clutches are intended as the main actuation mechanism of a robotic manipulator with five degrees of freedom. Multiple steps to increase the toque-to-mass ratio of the clutch are evaluated and implemented in one design. First, we focus on the Hall sensors’ configuration. Our proposed MR clutches feature embedded Hall sensors for the indirect torque measurement. A new arrangement of the sensors with no effect on the magnetic reluctance of the clutch is presented. Second, we improve the magnetization of the MR clutch. We utilize a new hybrid design that features a combination of an electromagnetic coil and a permanent magnet for improved torque-to-mass ratio. Third, the gap size reduction in the hybrid MR clutch is introduced and the effect of such reduction on maximum torque and the dynamic range of MR clutch is investigated. Finally, the design for a pair of MR clutches with a shared magnetic core for antagonistic actuation of the robot joint is presented and experimentally validated. The details of each approach are discussed and the results of the finite element analysis are used to highlight the required engineering steps and to demonstrate the improvements achieved. Using the proposed design, several prototypes of the MR clutch with various torque capacities ranging from 15 to 200 N·m are developed, assembled, and tested. The experimental results demonstrate the performance of the proposed design and validate the accuracy of the analysis used for the development.

1995 ◽  
Vol 117 (1) ◽  
pp. 20-25 ◽  
Author(s):  
Pardeep K. Bhatti ◽  
Klaus Gschwend ◽  
Abel Y. Kwang ◽  
Ahmer R. Syed

Three-dimensional finite element analysis has been applied for determining time-dependent solder joint response of leaded surface mount components under thermal cycling. Two main challenges are the geometric complexity in mesh development and computationally intensive analysis because of the highly nonlinear material properties. Advanced techniques have been applied, including multi-point constraints for mesh transition, which reduces the number of degrees of freedom in the model, and substructuring, which effectively reduces computational time in the iterative analysis. The result is a generic approach for nonlinear creep analysis using commercial FEA software on a high performance workstation. Illustrations are provided for J and gullwing leaded packages.


2013 ◽  
Vol 834-836 ◽  
pp. 1497-1500
Author(s):  
Jian Xiang Tang ◽  
Xin Hua Jiang ◽  
Jiang Min Deng ◽  
Te Fang Chen

In this paper, electromagnetic dynamic characteristics of suspension system of middle-low speed maglev train are analyzed with finite element analysis (FEA) method based on the high-performance computing platform (HPC). The couple structure between F-type track and suspension magnet is meshed by pretension element. The dynamic characteristics of suspension system are simulated in three-dimensional model with 4 degrees of freedom motions condition. Both the numerical simulations and the actual force tests of suspension system are carried out with the same input. The result shows that the calculation accuracy of finite element analysis is high.


2010 ◽  
Vol 2010 ◽  
pp. 1-10 ◽  
Author(s):  
Diego F. Sánchez ◽  
Daniel M. Muñoz ◽  
Carlos H. Llanos ◽  
José M. Motta

Hardware acceleration in high performance computer systems has a particular interest for many engineering and scientific applications in which a large number of arithmetic operations and transcendental functions must be computed. In this paper a hardware architecture for computing direct kinematics of robot manipulators with 5 degrees of freedom (5D.o.f) using floating-point arithmetic is presented for 32, 43, and 64 bit-width representations and it is implemented in Field Programmable Gate Arrays (FPGAs). The proposed architecture has been developed using several floating-point libraries for arithmetic and transcendental functions operators, allowing the designer to select (pre-synthesis) a suitable bit-width representation according to the accuracy and dynamic range, as well as the area, elapsed time and power consumption requirements of the application. Synthesis results demonstrate the effectiveness and high performance of the implemented cores on commercial FPGAs. Simulation results have been addressed in order to compute the Mean Square Error (MSE), using the Matlab as statistical estimator, validating the correct behavior of the implemented cores. Additionally, the processing time of the hardware architecture was compared with the same formulation implemented in software, using the PowerPC (FPGA embedded processor), demonstrating that the hardware architecture speeds-up by factor of 1298 the software implementation.


2014 ◽  
Vol 703 ◽  
pp. 436-439
Author(s):  
Si Zeng ◽  
Yu Xin Sun ◽  
Yi Du ◽  
Huang Qiu Zhu ◽  
Xian Xing Liu

Abstract. In this paper, a new type of maglev wind generator is proposed. The working principle, structure characteristics and the finite element analysis of the new maglev wind turbine are introduced. The generator consists of a 2 degrees of freedom (DOF) maglev generator and a 3 DOF hybrid magnetic bearing. An eight poles active magnetic bearing with external rotor is added into traditional direct-drive permanent magnet wind generator. The rotor ring is hollowed, which can leads to the self-decoupling for magnetic fields between power generation system and suspension system. Compared with the conventional maglev wind generator, the proposed generator not only shows the same advantages of traditional maglev wind turbines, but also improves the axial length utilization and decrease the cost of motor control.


Micromachines ◽  
2019 ◽  
Vol 10 (8) ◽  
pp. 502 ◽  
Author(s):  
Yan Gu ◽  
Xiuyuan Chen ◽  
Faxiang Lu ◽  
Jieqiong Lin ◽  
Allen Yi ◽  
...  

The limited degrees of freedom (DOF) and movement form of the compliant vibration-assisted processing device are inherent constraints of the polishing technique. In this paper, a concept of a 3-DOF rotary vibration-assisted micropolishing system (3D RVMS) is proposed and demonstrated. The 3-DOF means the proposed vibration-assisted polishing device (VPD) is driven by three piezo-electric (PZT) actuators. Compared with the current vibration-assisted polishing technology which generates a trajectory with orthogonal actuators or parallel actuators, a novel 3-DOF piezoelectrically actuated VPD was designed to enable the workpiece to move along the rotational direction. Meanwhile, the proposed VPD can deliver large processing stoke in mrad scale and can be operated at a flexible non-resonant mode. A matrix-based compliance modeling method was adopted for calculating the compliance and amplification ratio of the VPD. Additionally, the dynamic and static properties of the developed VPD were verified using finite element analysis. Then, the VPD was manufactured and experimentally tested to investigate its practical performance. Finally, various polished surfaces which used silicon carbide (SiC) ceramic as workpiece material were uniformly generated by the high-performance 3D RVMS. Compared with a nonvibration polishing system, surface roughness was clearly improved by introducing rotary vibration-assisted processing. Both the analysis and experiments verified the effectiveness of the present 3D RVMS for micro-machining surfaces.


1999 ◽  
Author(s):  
Saeid Habibi ◽  
Andrew Goldenberg

Abstract This paper describes a new high performance robotic actuation system that presents a powerful alternative to existing commercial systems. This actuation system is self-contained and combines the benefits of conventional hydraulic and direct drive electrical actuators, namely high torque/mass ratio and modularity. It is referred to as the ElectroHydraulic Actuator (EHA) and results from the fusion of the above mentioned technologies. EHA is a unique device with its own characteristics and requires hydraulic components that are specifically tailored to its needs. To fulfill these requirements, a new symmetrical Linear Actuator (SLA) was designed as a sub-component of EHA. Experimental data from a prototype of EHA are reported.


Author(s):  
D. Liu ◽  
S. Koric ◽  
A. Kontsos

Direct numerical simulations (DNS) of knitted textile mechanical behavior are for the first time conducted on high performance computing (HPC) using both the explicit and implicit finite element analysis (FEA) to directly assess effective ways to model the behavior of such complex material systems. Yarn-level models including interyarn interactions are used as a benchmark computational problem to enable direct comparison in terms of computational efficiency between explicit and implicit methods. The need for such comparison stems from both a significant increase in the degrees-of-freedom (DOFs) with increasing size of the computational models considered as well as from memory and numerical stability issues due to the highly complex three-dimensional (3D) mechanical behavior of such 3D architectured materials. Mesh and size dependency, as well as parallelization in an HPC environment are investigated. The results demonstrate a satisfying accuracy combined with higher computational efficiency and much less memory requirements for the explicit method, which could be leveraged in modeling and design of such novel materials.


2019 ◽  
Vol 13 (3) ◽  
pp. 5334-5346
Author(s):  
M. N. Nguyen ◽  
L. Q. Nguyen ◽  
H. M. Chu ◽  
H. N. Vu

In this paper, we report on a SOI-based comb capacitive-type accelerometer that senses acceleration in two lateral directions. The structure of the accelerometer was designed using a proof mass connected by four folded-beam springs, which are compliant to inertial displacement causing by attached acceleration in the two lateral directions. At the same time, the folded-beam springs enabled to suppress cross-talk causing by mechanical coupling from parasitic vibration modes. The differential capacitor sense structure was employed to eliminate common mode effects. The design of gap between comb fingers was also analyzed to find an optimally sensing comb electrode structure. The design of the accelerometer was carried out using the finite element analysis. The fabrication of the device was based on SOI-micromachining. The characteristics of the accelerometer have been investigated by a fully differential capacitive bridge interface using a sub-fF switched-capacitor integrator circuit. The sensitivities of the accelerometer in the two lateral directions were determined to be 6 and 5.5 fF/g, respectively. The cross-axis sensitivities of the accelerometer were less than 5%, which shows that the accelerometer can be used for measuring precisely acceleration in the two lateral directions. The accelerometer operates linearly in the range of investigated acceleration from 0 to 4g. The proposed accelerometer is expected for low-g applications.


2011 ◽  
Vol 39 (3) ◽  
pp. 193-209 ◽  
Author(s):  
H. Surendranath ◽  
M. Dunbar

Abstract Over the last few decades, finite element analysis has become an integral part of the overall tire design process. Engineers need to perform a number of different simulations to evaluate new designs and study the effect of proposed design changes. However, tires pose formidable simulation challenges due to the presence of highly nonlinear rubber compounds, embedded reinforcements, complex tread geometries, rolling contact, and large deformations. Accurate simulation requires careful consideration of these factors, resulting in the extensive turnaround time, often times prolonging the design cycle. Therefore, it is extremely critical to explore means to reduce the turnaround time while producing reliable results. Compute clusters have recently become a cost effective means to perform high performance computing (HPC). Distributed memory parallel solvers designed to take advantage of compute clusters have become increasingly popular. In this paper, we examine the use of HPC for various tire simulations and demonstrate how it can significantly reduce simulation turnaround time. Abaqus/Standard is used for routine tire simulations like footprint and steady state rolling. Abaqus/Explicit is used for transient rolling and hydroplaning simulations. The run times and scaling data corresponding to models of various sizes and complexity are presented.


Author(s):  
Jianqiang Yu ◽  
Xiaomin Dong ◽  
Tao Wang ◽  
Zhengmu Zhou ◽  
Yaqin Zhou

This paper presents the damping characteristics of a linear magneto-rheological (MR) damper with dual controllable ducts based on numerical and experimental analysis. The novel MR damper consisting of a dual-rod cylinder system and a MR valve is used to reduce the influences of viscous damping force and improve dynamic range. Driven by the dual-rod cylinder system, MR fluid flows in the MR valve. The pressure drop of the MR valve with dual independent controllable ducts can be controlled by tuning the current of two independent coils. Based on the mathematical model and the finite element method, the damping characteristics of the MR damper is simulated. A prototype is designed and tested on MTS machine to evaluate its damping characteristics. The results show that the working states and damping force of the MR damper can be controlled by the two independent coils.


Sign in / Sign up

Export Citation Format

Share Document