0.4 μm Diameter Nickel-Filament Silicone-Matrix Resilient Composites for Electromagnetic Interference Shielding

1997 ◽  
Vol 119 (4) ◽  
pp. 236-238 ◽  
Author(s):  
Xiaoping Shui ◽  
D. D. L. Chung

Resilient silicone-matrix composites containing 7–13 volume percent nickel filaments (0.4 μm diameter) exhibited 74–93 dB electromagnetic interference (EMI) shielding effectiveness at 1–2 GHz and 1 × 10−1 – 2 × 10−2 Ω cm DC volume electrical resistivity. The high shielding effectiveness is due to the small diameter of the nickel filaments. The composites are useful for EMI shielding gaskets and cable jackets.

1991 ◽  
Vol 113 (4) ◽  
pp. 417-420 ◽  
Author(s):  
Mingguang Zhu ◽  
D. D. L. Chung

Short nickel fiber silicone-matrix composites containing 3–12 vol. percent fibers were fabricated by the impregnation of silicone into a nickel fiber perform. The composites exhibited volume electrical resistivity ranging from 4.5 × 10−4 to 2.8 × 10−3 ohm.cm, contact electrical resistivity (with copper at a pressure > 0.1 MPa) ranging from 0.0090 to 0.0155 ohm.cm2, permanent set one percent after compression to a stress of 0.4 MPa and a strain up to 13.5 percent for 7 days, and electromagnetic interference (EMI) shielding effectiveness > 50 dB at 1.0–2.0 GHz. The volume and contact resistivities were essentially not affected after heating in air at 130–150°C for 7 days. The coefficient of thermal expansion was 27.5 × 10−6 °C−1 for a composite containing 8.2 vol. percent nickel fibers. These resilient electrically conducting composites are useful for electrical contacts and for gaskets for EMI shielding.


2017 ◽  
Vol 5 (5) ◽  
pp. 1095-1105 ◽  
Author(s):  
Jun Li ◽  
Hu Liu ◽  
Jiang Guo ◽  
Zhen Hu ◽  
Zhijiang Wang ◽  
...  

Flexible lightweight conductive nanocomposites prepared by self-assembly of gold nanoparticles on charged polymer nanofibers show enhanced EMI shielding effectiveness and mechanical properties.


RSC Advances ◽  
2016 ◽  
Vol 6 (32) ◽  
pp. 26959-26966 ◽  
Author(s):  
Suryasarathi Bose ◽  
Maya Sharma ◽  
Avanish Bharati ◽  
Paula Moldenaers ◽  
Ruth Cardinaels

Mediated by the PS-r-PMMA, the MWNTs were mostly localized at the interface and bridged the PMMA droplets. This strategy led to enhance EMI shielding effectiveness at 0.25 wt% MWNTs through multiple scattering from MWNT covered droplets.


2019 ◽  
Vol 7 (32) ◽  
pp. 9820-9829 ◽  
Author(s):  
Zeying Zhan ◽  
Quancheng Song ◽  
Zehang Zhou ◽  
Canhui Lu

Ti3C2Tx/TOCNF composite papers present excellent mechanical strength and EMI shielding effectiveness due to their hierarchically aligned structure and strong intermolecular interactions.


Author(s):  
Ch Hima Gireesh ◽  
Koona Ramji ◽  
K.G Durga Prasad ◽  
Budumuru Srinu

In the present technological environment, the aerospace industry needs cutting-edge materials not only to meet the requirements such as lower weight and higher values of strength and stiffness, but also to protect against electromagnetic interference. In this article, an attempt has been made to prepare Al6061 hybrid metal matrix composites reinforced with varying percentages of SiC, Al2O3, and fly ash particulates through a stir-casting route. As per ASTM standards, various tests have been conducted to know the density, tensile strength, yield strength, and hardness. Simultaneously, all the prepared composites are tested for electromagnetic interference (EMI) shielding effectiveness (SE) under the X band frequency with the help of a vector network analyzer. In order to identify the composite possessing good mechanical properties, as well as shielding effectiveness, a TOPSIS methodology has been employed in this work. The present study reveals that the proposed hybrid composite contains 5% of each reinforcement material which shows better mechanical properties as well as good shielding effectiveness.


2007 ◽  
Vol 7 (2) ◽  
pp. 549-554
Author(s):  
Yonglai Yang ◽  
Mool C. Gupta ◽  
Kenneth L. Dudley ◽  
Roland W. Lawrence

Electromagnetic interference (EMI) shielding characteristics of carbon nanofiber-polystyrene composites were investigated in the frequency range of 12.4–18 GHz (Ku-band). It was observed that the shielding effectiveness of such composites was frequency independent, and increased with increasing carbon nanofiber loading within Ku-band. The experimental data exhibited that the shielding effectiveness of the polymer composite containing 20 wt% carbon nanofibers could reach more than 36 dB in the measured frequency region, indicating such composites can be applied to the potential EMI shielding materials. In addition, the results showed that the contribution of reflection to the EMI shielding effectiveness was much larger than that of absorption, implying the primary EMI shielding mechanism of such composites was reflection of electromagnetic radiation within Ku-band.


Coatings ◽  
2021 ◽  
Vol 11 (9) ◽  
pp. 1030 ◽  
Author(s):  
Wanshun Zhang ◽  
Hongyang Zhao ◽  
Xiaodong Hu ◽  
Dongying Ju

The microstructure, electrical conductivity, and electromagnetic interference (EMI) shielding effectiveness (SE) of CNTs/Mg Matrix composites prepared by accumulative roll bonding (ARB) were systematically investigated to understand the effects of CNTs on the electromagnetic interference shielding effectiveness property of magnesium. A model based on the shielding of the electromagnetic plane wave was used to theoretically discuss the EMI shielding mechanisms of ARB-processed composites. The experimental results indicated that the methods were feasible to prepare laminated composites. The SE of the material increased gradually with the increase of electrophoretic deposition time. When the electrophoretic deposition time reached 8 min, the value of SE remained 87–95 dB in the frequency range of 8.2–12.4 GHz. The increase in SE was mainly attributed to the improvement in the reflection and multiple reflection losses of incident electromagnetic wave due to the increased amounts of CNTs and interfaces. The methods provided an efficient strategy to produce laminated metal matrix composites with high electromagnetic shielding properties.


Nanoscale ◽  
2019 ◽  
Vol 11 (17) ◽  
pp. 8616-8625 ◽  
Author(s):  
Li Huang ◽  
Jianjun Li ◽  
Yibin Li ◽  
Xiaodong He ◽  
Ye Yuan

High-performance electromagnetic interference (EMI) shielding materials possess features of light weight, flexibility and excellent EMI shielding effectiveness.


Nanoscale ◽  
2020 ◽  
Vol 12 (5) ◽  
pp. 3308-3316 ◽  
Author(s):  
Caichao Wan ◽  
Yue Jiao ◽  
Xianjun Li ◽  
Wenyan Tian ◽  
Jian Li ◽  
...  

A multi-dimensional and level-by-level assembly strategy is developed to construct free-standing and sandwich-type nanoheterostructures achieving an outstanding EMI shielding effectiveness of ∼50.6 dB in the X-band.


2016 ◽  
Vol 4 (2) ◽  
pp. 371-375 ◽  
Author(s):  
Qing Yuchang ◽  
Wen Qinlong ◽  
Luo Fa ◽  
Zhou Wancheng ◽  
Zhu Dongmei

Graphene nanosheets filled BaTiO3 ceramics with high-performance EMI shielding effectiveness, greater than 40 dB in the X-band at 1.5 mm thickness, were prepared via pressureless sintering.


Sign in / Sign up

Export Citation Format

Share Document