A Mathematical Expression of Three-Dimensional Configuration of the Scoliotic Spine

1996 ◽  
Vol 118 (2) ◽  
pp. 247-252 ◽  
Author(s):  
M. Kanayama ◽  
S. Tadano ◽  
K. Kaneda ◽  
T. Ukai ◽  
K. Abumi

Three-dimensional configuration of the scoliotic spine was mathematically expressed by a spatial curve passing through each vertebral centroid (“vertebral body line”). Three-dimensional location of the vertebral centroid was determined from digitization on the frontal and sagittal roentgenograms. Cobb angle, which is clinically used for measuring scoliosis curvature, was calculated in space to evaluate scoliosis deformity three-dimensionally. In forty-five scoliotic spines, regardless of curvature and curve patterns, the spinal configurations were excellently approximated by vertebral body lines. Vertebral body lines swerved from the sagittal plane at the end vertebrae, but aligned on a certain plane within the scoliosis region. Three-dimensional Cobb angle, which was larger than that in the frontal plane, can be utilized to evaluate the scoliosis deformity.

Healthcare ◽  
2021 ◽  
Vol 9 (10) ◽  
pp. 1321
Author(s):  
Wenjing Quan ◽  
Huiyu Zhou ◽  
Datao Xu ◽  
Shudong Li ◽  
Julien S. Baker ◽  
...  

Kinematics data are primary biomechanical parameters. A principal component analysis (PCA) of waveforms is a statistical approach used to explore patterns of variability in biomechanical curve datasets. Differences in experienced and recreational runners’ kinematic variables are still unclear. The purpose of the present study was to compare any differences in kinematics parameters for competitive runners and recreational runners using principal component analysis in the sagittal plane, frontal plane and transverse plane. Forty male runners were divided into two groups: twenty competitive runners and twenty recreational runners. A Vicon Motion System (Vicon Metrics Ltd., Oxford, UK) captured three-dimensional kinematics data during running at 3.3 m/s. The principal component analysis was used to determine the dominating variation in this model. Then, the principal component scores retained the first three principal components and were analyzed using independent t-tests. The recreational runners were found to have a smaller dorsiflexion angle, initial dorsiflexion contact angle, ankle inversion, knee adduction, range motion in the frontal knee plane and hip frontal plane. The running kinematics data were influenced by running experience. The findings from the study provide a better understanding of the kinematics variables for competitive and recreational runners. Thus, these findings might have implications for reducing running injury and improving running performance.


2019 ◽  
Vol 32 (03) ◽  
pp. 241-249 ◽  
Author(s):  
Andrew Worth ◽  
Katherine Crosse ◽  
Andrew Kersley

Objective The aim of this study was to report the use of custom saw guides produced using computed tomographic imaging (CT), computer simulation and three-dimensional (3D) printing to aid surgical correction of antebrachial deformities in six dogs. Materials and Methods Antebrachial limb deformities in four small, and two large, breed dogs (seven limbs) were surgically corrected by a radial closing wedge ostectomy and ulnar osteotomy. The location and orientation of the wedge ostectomy were determined using CT data, computer-assisted planning and production of a saw guide in plastic using a 3D printer. At surgery, the guide was clamped to the surface of the radius and used to direct the oscillating saw blade. The resultant ostectomy was closed and stabilized with a bone plate. Results Five limbs healed without complications. One limb was re-operated due to a poorly resolved rotational component of the deformity. One limb required additional stabilisation with external fixation due to screw loosening. The owners of five dogs completed a Canine Orthopedic Index survey at a follow-up period of 37 to 81 months. The median preoperative score was 3.5 and the median postoperative score was 1, representing an overall positive effect of surgery. Radiographically, 5/7 limbs were corrected in the frontal plane (2/7 were under-corrected). Similarly, 5/7 limbs were corrected in the sagittal plane, and 2/7 were over-corrected in the sagittal place. Conclusions Computer-aided design and rapid prototyping technologies can be used to create saw guides to simplify one-stage corrective osteotomies of the antebrachium using internal fixation in dogs. Despite the encouraging results, accurate correction of rotational deformity was problematic and this aspect requires further development.


2020 ◽  
Vol 20 (09) ◽  
pp. 2040012
Author(s):  
GEON KIM ◽  
JIHEE JUNG ◽  
YOUNGJOO CHA ◽  
JOSHUA (SUNG) H. YOU

Hyperpronation of the foot is believed to contribute to ankle hypermobility and associated stiffness reduction, but the underlying biomechanical mechanisms remain unknown. This study aimsed to investigate multidirectional ankle displacement and associated stiffness when a posterior–anterior impact force was applied to the posterior knee compartment. Forty healthy adults with and without foot hyperpronation were recruited. A three-dimensional motion capture system and force plates were used to acquire angular displacement and ankle joint moment data. The independent [Formula: see text]-test and Mann–Whitney [Formula: see text] test were used to compare the group differences in ankle angular displacement, moment, and stiffness. Spearman’s rho test was performed to determine the relationship between ankle angular displacement and stiffness. The hyperpronation group demonstrated significantly greater sagittal ([Formula: see text]) and frontal plane ([Formula: see text]) angular displacements and reduced sagittal plane ankle stiffness ([Formula: see text]) than the neutral group. The Spearman’s correlation analysis showed a close inverse relationship between the ankle angular displacement and stiffness, ranging from [Formula: see text] to [Formula: see text]. The biomechanical data in our study suggest that individuals with foot hyperpronation present with multidirectional hypermobility and a reduction in ankle stiffness. These factors contribute to an increased risk of ankle-foot injury in individuals with foot hyperpronation.


Author(s):  
Ying Yue Zhang ◽  
Gusztáv Fekete ◽  
Justin Fernandez ◽  
Yao Dong Gu

To determine the influence of the unstable sole structure on foot kinematics and provide theoretical basis for further application.12 healthy female subjects walked through a 10-meter experimental channel with normal speed wearing experimental shoes and control shoes respectively at the gait laboratory. Differences between the groups in triplanar motion of the forefoot, rearfoot and hallux during walking were evaluated using a three-dimensional motion analysis system incorporating with Oxford Foot Model (OFM). Compare to contrast group, participants wearing experimental shoes demonstrated greater peak forefoot dorsiflexion, forefoot supination and longer halluces plantar flexion time in support phase. Additionally, participants with unstable sole structure also demonstrated smaller peak forefoot plantarflexion, rearfoot dorsiflexion and range of joint motion in sagittal plane and frontal plane.. The difference mainly appeared in sagittal and frontal plane. With a stimulation of unstable, it may lead to the reinforcement of different flexion between middle and two ends of the foot model. The greater forefoot supination is infered that the unstable element structure may affect the forefoot motion on the frontal plane and has a control effect to strephexopodia people. The stimulation also will reflexes reduce the range of rearfoot motion in sagittal and frontal planes to control the gravity center of the body and keep a steady state in the process of walking.


2019 ◽  
Vol 16 (2) ◽  
pp. 749
Author(s):  
Bojan Jorgić ◽  
Petra Mančić ◽  
Saša Milenković ◽  
Nikola Jevtić ◽  
Mladen Živković

Scoliosis is a multifactorial three-dimensional (3D) spinal deformation which always includes elementary deformations on three planes: a lateral curvature on the frontal plane, loss of natural physiological curvature on the sagittal plane and, in most cases, increase of lordosis in the lumbosacral joint (hyperlordosis), and a (very typical) vertebral axial rotation on the horizontal plane. One of the best methods in scoliosis correction is the Schroth method. In view of the above, the objective of this study is to identify the effects of the Schroth method on correcting functional-motor status in children with adolescent idiopathic scoliosis (IS). The participant sample comprised 20 children, of an average age of 14.5, who took part in the 10-day Schroth Camp. The following measure instruments were used for the assessment of the effect of the Schroth method: the Sorensen test, the Sit-and-reach test, and height assessment. Statistically significant improvements were identified across the results of all three tests, for the Sorensen test: 45.6±19.29 s, the Sit-and-reach test: 4.05±2.25 cm, and height 1.4±0.66 cm. It can be concluded that the conducted Schroth method exercise program exerted a positive effect on improving motor functionality, as well as enhancing flexibility and isometric endurance of the lumbar extensors of the spine. Additionally, there was an increase in height, which indicates a positive effect in terms of the functionality and symmetry of the left and right sides of the body, and in terms of improved posture on the frontal and sagittal planes.


2017 ◽  
Vol 2 (3) ◽  
pp. 2473011417S0003
Author(s):  
Christian Plaass ◽  
Leif Claassen ◽  
Christina Stukenborg-Colsman ◽  
Daiwei Yao ◽  
Kiriakos Daniilidis ◽  
...  

Category: Ankle Introduction/Purpose: The total ankle replacement (TAR) is increasingly used in cases of severe ankle arthritis. Although the knowledge about joint kinematics is crucial for designing and positioning of TAR there is no consensus about the talocrural joint axis. The aim of the present study was the determination of the kinematic rotational axis of the talocrural joint as an orientation for prosthesis positioning. Methods: We analyzed 96 CT-scans of full cadaver caucasien legs. With the software Mimic, 3-Matic (both Materialize) and GOM inspect we generated three-dimensional reconstruction models of the talus and a best fitting cone orientated to the talar articular surface. The kinematic rotational axis was defined to be the axis of this cone. Results: The determination of the kinematic rotational axis showed a high inter- and intrarater reliability. The kinematic rotational axis of the talocrural joint is orientated from lateral-distal to medial-proximal (84.9° ± 8.5 compared to mechanical tibial axis in frontal plane), from dorsal-proximal to anterior-distal (93.1° ± 42.3 compared to mechanical tibial axis in sagittal plane) and from dorsal-lateral to anterior-medial (169.0° ± 6.7 compared to mechanical tibial axis in axial plane). A high standard deviation especially in the sagittal plane was noteworthy. Conclusion: With the present study we present a new reproducable single-axis model of the talocrural joint. Our data showed relevant interindividual variations. The consideration of these variations might support the development of patient-specific TAR implantation techniques.


Author(s):  
S de Reuver ◽  
RC Brink ◽  
JF Homans ◽  
L Vavruch ◽  
H Tropp ◽  
...  

Relative anterior spinal overgrowth (RASO) was proposed as a generalized growth disturbance and a potential initiator of adolescent idiopathic scoliosis (AIS). However, anterior lengthening was also observed in neuromuscular (NM) scoliosis, was shown to be restricted to the apical areas and to be located in the intervertebral discs, not in the bone. In this study the goal was to determine if other scoliotic curves of known origin exhibit the similar mechanism of anterior lengthening without changes in the vertebral body. Therefore CT-scans of 18 patients in whom a short segment congenital malformation had led to a long thoracic compensatory curve without bony abnormality were included. Of each vertebral body and intervertebral disc in the compensatory curve, the anterior and posterior length was measured on CT-scans in the exact mid-sagittal plane, corrected for deformity in all three planes. The total AP% of the compensatory curve in congenital scoliosis showed a lordosis (+1.8%) that differed from the kyphosis in non-scoliotic controls (-3.0%; p<0.001), and was comparable to AIS (+1.2%) and NM scoliosis (+0.5%). This anterior lengthening was not located in the bone; the vertebral body AP% showed a kyphosis (-3.2%), similar to non-scoliotic controls (-3.4%), as well as AIS (-2.5%) and NM scoliosis (-4.5%; p=1.000). However, the disc AP% showed a lordosis (+24.3%), which sharply contrasts to the kyphotic discs of controls (-1.5%; p<0.001), but was similar to AIS (+17.5%) and NM scoliosis (+20.5%). The results demonstrate that anterior lengthening is part of the three-dimensional deformity in different types of scoliosis and is exclusively located in the intervertebral discs. The bony vertebral bodies maintain their kyphotic shape, which indicates that there is no active bony overgrowth. Anterior lengthening appears to be a passive result of any scoliotic deformity, rather than being related to the specific cause of AIS.


2021 ◽  
Vol 15 (2) ◽  
pp. 9-14
Author(s):  
Eliza Smoła ◽  
Katarzyna Wódka ◽  
Marta A. Bibro ◽  
Agnieszka Jankowicz-Szymańska

<p><b>Introduction: </b>The objective of the study was to assess the flexibility of the hamstring muscles and their relationship with the position of the spine, shoulder and pelvic girdles in individual planes in boys training football. <p><b>Material and methods: </b>The study included 28 boys aged 10-14, training football 3 times a week for at least 2 years. The subjects were divided into two groups: correct bilateral flexibility of the hamstring muscles, bilateral shortening of the hamstring muscles. Body height and weight were measured and BMI was calculated. The three-dimensional position of the trunk was examined using the Zebris pointer ultrasound system. The passive straightleg- raising test was used to assess the flexibility of the hamstring muscles. <p><b>Results: </b>32% of people were diagnosed with the correct length of both hamstring muscles, 57% had shortened muscles in both limbs. Mean values determining the depth of thoracic kyphosis indicated its deepening in each of the groups, however, lower values were recorded in boys with reduced flexibility of the hamstring muscle mass. This group was also characterised by a better balance of the trunk in the sagittal plane. The average depth of lumbar lordosis in both groups was within the normal range. In the frontal plane, in both groups of footballers there was a tendency to lift the left shoulder (more frequent in the group with normal flexibility), the pelvis on the left side and shift the trunk to the right. <p><b>Conclusion: </b>Shortening of the hamstring muscles is common in boys who train football, but no evidence of a relationship between the limited flexibility of these muscles and the position of the trunk was found.


2021 ◽  
Vol 2071 (1) ◽  
pp. 012013
Author(s):  
D K Ngoc ◽  
A F Salleh ◽  
M S Salim ◽  
N Omar ◽  
K S Basarrudin ◽  
...  

Abstract This study investigated the effect of carrying unstable load on thoracic kinematics while walking on a curved path. Three-dimensional spinal kinematics were defined as the rotations between thoracic and the Virtual laboratory coordinate system (Tho/Virtual lab) which consisted of lateral bending (LB), flexion/extension (FE) and axial rotation (AR) in the frontal plane, sagittal plane and transverse plane, respectively. Eight healthy young adults (4 males and 4 females) performed loads carrying and walking on one meter radius curved path. Spinal kinematics was determined at the left leg heel strike and just before the right toe off during the curved path walking. As a result, a significant main effect of load intensity was found only on FE of (Tho/Virtual lab) at both left leg heel strike and right leg toe off. The study concluded that an increase in the load intensity of unstable load from 10% of body weight likely to generate more thorax extension.


Author(s):  
Luke Chowning ◽  
John Krzyszkowski ◽  
Brandon Nunley ◽  
Ryan Lanier ◽  
Isabella Gonzales ◽  
...  

The execution strategy of technical dance movements is constrained by aesthetic and qualitative artistic requirements. As such, there are limited leap-landing strategies that may be used by dancers when executing a grand jeté or saut de chat. The purpose of this study was to determine potential differences in lower extremity angular positioning and joint loading when performing a dance-style leap landing. Fifteen female dancers (age: 20 ± 1 years; height: 1.61 ± 0.13 m; weight: 58.00 ± 11.89 kg) completed six leap-landing trials during which three-dimensional kinematics and kinetics data were collected. Paired-samples t-tests (α = 0.05) and Cohen’s d effect sizes (ES; large ≥ 0.8) were used to compare the following variables: jump height; peak vertical ground reaction force; loading time; loading rate; joint angular positioning of the ankle, knee, hip, and trunk in the frontal and sagittal planes; and joint angular impulse of the ankle, knee, and hip in the frontal and sagittal planes between the dominant and non-dominant limbs. Frontal plane hip angular impulse was significantly greater in the dominant limb (p = 0.023, ES = 1.53). While no other statistically significant differences were observed between dominant and non-dominant limbs, moderate effect sizes were observed for the hip and trunk angles in the frontal plane along with hip impulse in the sagittal plane. This study indicates that dancers might slightly alter their landing strategy at the hip joint when leap-landing onto the dominant limb. Frontal plane hip mechanics should be considered to minimize overuse injury potential in the dominant limb.


Sign in / Sign up

Export Citation Format

Share Document