An Asymptotic Model of Viscous Flow Limitation in a Highly Collapsed Channel

1998 ◽  
Vol 120 (4) ◽  
pp. 544-546 ◽  
Author(s):  
O. E. Jensen

A viscous flow through a long two-dimensional channel, one wall of which is formed by a finite-length membrane, experiences flow limitation when the channel is highly collapsed over a narrow region under high external pressure. Simple approximate relations between flow rate and pressure drop are obtained for this configuration by the use of matched asymptotic expansions. Weak inertial effects are also considered.

2005 ◽  
Author(s):  
C. A. Ortega Vivas ◽  
S. Barraga´n Gonza´lez ◽  
J. M. Garibay Cisneros

This study analyses the macroscopic flow through a two dimensional porous medium model by numerical and experimental methods. The objective of this research is to develop an empirical model by which the pressure drop can be obtained. In order to construct the model, a series of blocks are used as an idealized pressure drop device, so that the pressure drop can be calculated. The range of porosities studied is between 28 and 75 per cent. It is found that the pressure drop is a combination of viscosity and inertial effects, the later being more important as the Reynolds number is increased. The empirical equation obtained in this investigation is compared with the Ergun equation.


1964 ◽  
Vol 18 (1) ◽  
pp. 94-96 ◽  
Author(s):  
Joseph B. Keller

Viscous flow perpendicular to a line (or ‘grating’) of evenly spaced identical cylinders is considered in the case when the spacing between the cylinders is much smaller than their cross-sectional dimensions. Lubrication theory is used to find the pressure drop across the grating and hence the force on each cylinder. A square array (or ‘lattice’) of closely packed cylinders is similarly treated.


1959 ◽  
Vol 6 (4) ◽  
pp. 542-546 ◽  
Author(s):  
Howard Brenner

A general formula is developed which permits a calculation of the pressure drop arising from the slow steady flow of a viscous fluid through a circular cylinder for arbitrarily assigned conditions of velocity on the bounding surfaces of the cylinder. In particular, the diminution in pressure can be calculated directly from the prescribed boundary velocities without requiring a detailed solution of the equations of motion. Hence it is possible to compute, in comparatively simple fashion, the magnitude of this macroscopic parameter for a large variety of complex motions which would normally present great analytical difficulties.By way of illustration the additional pressure drop arising from the presence of a point force situated along the axis of a cylinder is calculated. The additional force required to maintain the motion in the presence of the obstacle is exactly twice the magnitude of the point force itself.


1988 ◽  
Vol 190 ◽  
pp. 393-407 ◽  
Author(s):  
O. Coulaud ◽  
P. Morel ◽  
J. P. Caltagirone

This paper deals with the introduction of a nonlinear term into Darcy's equation to describe inertial effects in a porous medium. The method chosen is the numerical resolution of flow equations at a pore scale. The medium is modelled by cylinders of either equal or unequal diameters arranged in a regular pattern with a square or triangular base. For a given flow through this medium the pressure drop is evaluated numerically.The Navier-Stokes equations are discretized by the mixed finite-element method. The numerical solution is based on operator-splitting methods whose purpose is to separate the difficulties due to the nonlinear operator in the equation of motion and the necessity of taking into account the continuity equation. The associated Stokes problems are solved by a mixed formulation proposed by Glowinski & Pironneau.For Reynolds numbers lower than 1, the relationship between the global pressure gradient and the filtration velocity is linear as predicted by Darcy's law. For higher values of the Reynolds number the pressure drop is influenced by inertial effects which can be interpreted by the addition of a quadratic term in Darcy's law.On the one hand this study confirms the presence of a nonlinear term in the motion equation as experimentally predicted by several authors, and on the other hand analyses the fluid behaviour in simple media. In addition to the detailed numerical solutions, an estimation of the hydrodynamical constants in the Forchheimer equation is given in terms of porosity and the geometrical characteristics of the models studied.


Two types of oscillatory viscous flow are considered: the first inside a two-dimensional channel, the second inside an axisymmetric pipe. The walls of the channel or pipe are taken to be small perturbations of the straight and parallel case, these distortions being much smaller than the width of the channel or pipe, so that the equation of motion may be linearized to give an Orr–Sommerfield type of equation. It is assumed that the width of the channel or pipe is comparable with the Stokes layer thickness. For sinusoidal perturbations of the wall, the asymptotic solutions for the parameter (Reynolds number times wavenumber) being very small or very large are considered. The general method may also be applied numerically to obtain solutions for non-periodic dilations or constrictions at arbitrary Reynolds number, and as an illustration the distributions of shear and pressure gradient are given for a number of examples.


1982 ◽  
Vol 104 (4) ◽  
pp. 314-323 ◽  
Author(s):  
J. M. Robertson ◽  
M. E. Clark ◽  
L. C. Cheng

Numerical (finite-difference) solutions in vorticity-stream function variables using a nonorthogonal geometric transform are found for viscous flow through a plane channel in which a portion of the boundary oscillates to change the flow. Calculations were made for three rates of inflow and for three frequencies of oscillation. The boundary pumpage relative to inflow decreased with inflow Karman number and with the oscillatory period of the boundary. The maximum shear stress, as indicated by the maximum vorticity, increased with Karman number and occurred when the boundary was in the maximum stenotic position. It did not change with boundary period except for the case when the period was the smallest. The channel pressure drop was significantly affected by the pumpage as well as the boundary nonuniformity.


Author(s):  
Suman Debnath ◽  
Anirban Banik ◽  
Tarun Kanti Bandyopadhyay ◽  
Mrinmoy Majumder ◽  
Apu Kumar Saha

Sign in / Sign up

Export Citation Format

Share Document