An Empirical Equation for Flow Through Porous Media

2005 ◽  
Author(s):  
C. A. Ortega Vivas ◽  
S. Barraga´n Gonza´lez ◽  
J. M. Garibay Cisneros

This study analyses the macroscopic flow through a two dimensional porous medium model by numerical and experimental methods. The objective of this research is to develop an empirical model by which the pressure drop can be obtained. In order to construct the model, a series of blocks are used as an idealized pressure drop device, so that the pressure drop can be calculated. The range of porosities studied is between 28 and 75 per cent. It is found that the pressure drop is a combination of viscosity and inertial effects, the later being more important as the Reynolds number is increased. The empirical equation obtained in this investigation is compared with the Ergun equation.

1998 ◽  
Vol 120 (4) ◽  
pp. 544-546 ◽  
Author(s):  
O. E. Jensen

A viscous flow through a long two-dimensional channel, one wall of which is formed by a finite-length membrane, experiences flow limitation when the channel is highly collapsed over a narrow region under high external pressure. Simple approximate relations between flow rate and pressure drop are obtained for this configuration by the use of matched asymptotic expansions. Weak inertial effects are also considered.


1988 ◽  
Vol 190 ◽  
pp. 393-407 ◽  
Author(s):  
O. Coulaud ◽  
P. Morel ◽  
J. P. Caltagirone

This paper deals with the introduction of a nonlinear term into Darcy's equation to describe inertial effects in a porous medium. The method chosen is the numerical resolution of flow equations at a pore scale. The medium is modelled by cylinders of either equal or unequal diameters arranged in a regular pattern with a square or triangular base. For a given flow through this medium the pressure drop is evaluated numerically.The Navier-Stokes equations are discretized by the mixed finite-element method. The numerical solution is based on operator-splitting methods whose purpose is to separate the difficulties due to the nonlinear operator in the equation of motion and the necessity of taking into account the continuity equation. The associated Stokes problems are solved by a mixed formulation proposed by Glowinski & Pironneau.For Reynolds numbers lower than 1, the relationship between the global pressure gradient and the filtration velocity is linear as predicted by Darcy's law. For higher values of the Reynolds number the pressure drop is influenced by inertial effects which can be interpreted by the addition of a quadratic term in Darcy's law.On the one hand this study confirms the presence of a nonlinear term in the motion equation as experimentally predicted by several authors, and on the other hand analyses the fluid behaviour in simple media. In addition to the detailed numerical solutions, an estimation of the hydrodynamical constants in the Forchheimer equation is given in terms of porosity and the geometrical characteristics of the models studied.


Author(s):  
Christian Naaktgeboren ◽  
Paul S. Krueger ◽  
Jose´ L. Lage

The determination of permeability and form coefficient, defined by the Hazen-Dupuit-Darcy (HDD) equation of flow through a porous medium, requires the measurement of the pressure-drop per unit length caused by the medium. The pressure-drop emerging from flow adjustment effects between the porous medium and the surrounding clear fluid, however, is not related to the porous medium length. Hence, for situations in which the entrance and exit pressure-drops are not negligible, as one would expect for short porous media, the determination of the hydraulic parameters using the HDD equation is hindered. A criterion for determining the relative importance of entrance and exit pressure-drop effects, as compared to core effect, is then of practical and fundamental interest. This aspect is investigated analytically and numerically considering flow through a thin planar restriction placed in a circular pipe. Once the pressure-drop across the restriction is found, the results are then compared to the pressure-drop imposed by an obstructive section having the same dimension as the restriction but finite length, playing the role of the least restrictive porous medium core. This comparison yields a conservative estimate of the porous medium length necessary for neglecting entrance and exit pressure-drop effects. Results show that inlet and exit pressure-drop effects become increasingly important compared to core effects as the porosity decreases and Reynolds number increases for both laminar and turbulent flow regimes. (Correlations based on experimental results available in the literature are employed for turbulent pipe flow). The analysis also shows why the HDD equation breaks down when considering flow through porous media where the entrance and exit pressure-drop effects are not negligible, and how modified permeability and form coefficients become necessary to characterize this type of porous media. Curve-fits accurate to within 2.5% were obtained for the modified permeability and form coefficients of the planar restriction with Reynolds number ranging from 0.01 to 100 and porosity from 0.0625 to 0.909.


2002 ◽  
pp. 337-378 ◽  
Author(s):  
Jozef Telega ◽  
Wlodzimierz Bielski

The aim of this contribution is mainly twofold. First, the stochastic two-scale convergence in the mean developed by Bourgeat et al. [13] is used to derive the macroscopic models of: (i) diffusion in random porous medium, (ii) nonstationary flow of Stokesian fluid through random linear elastic porous medium. Second, the multi-scale convergence method developed by Allaire and Briane [7] for the case of several microperiodic scales is extended to random distribution of heterogeneities characterized by separated scales (stochastic reiterated homogenization). .


2020 ◽  
Vol 10 (1) ◽  
Author(s):  
Krzysztof M. Graczyk ◽  
Maciej Matyka

AbstractConvolutional neural networks (CNN) are utilized to encode the relation between initial configurations of obstacles and three fundamental quantities in porous media: porosity ($$\varphi$$ φ ), permeability (k), and tortuosity (T). The two-dimensional systems with obstacles are considered. The fluid flow through a porous medium is simulated with the lattice Boltzmann method. The analysis has been performed for the systems with $$\varphi \in (0.37,0.99)$$ φ ∈ ( 0.37 , 0.99 ) which covers five orders of magnitude a span for permeability $$k \in (0.78, 2.1\times 10^5)$$ k ∈ ( 0.78 , 2.1 × 10 5 ) and tortuosity $$T \in (1.03,2.74)$$ T ∈ ( 1.03 , 2.74 ) . It is shown that the CNNs can be used to predict the porosity, permeability, and tortuosity with good accuracy. With the usage of the CNN models, the relation between T and $$\varphi$$ φ has been obtained and compared with the empirical estimate.


Entropy ◽  
2019 ◽  
Vol 21 (2) ◽  
pp. 133 ◽  
Author(s):  
Junjie Ren ◽  
Qiao Zheng ◽  
Ping Guo ◽  
Chunlan Zhao

In the development of tight gas reservoirs, gas flow through porous media usually takes place deep underground with multiple mechanisms, including gas slippage and stress sensitivity of permeability and porosity. However, little work has been done to simultaneously incorporate these mechanisms in the lattice Boltzmann model for simulating gas flow through porous media. This paper presents a lattice Boltzmann model for gas flow through porous media with a consideration of these effects. The apparent permeability and porosity are calculated based on the intrinsic permeability, intrinsic porosity, permeability modulus, porosity sensitivity exponent, and pressure. Gas flow in a two-dimensional channel filled with a homogeneous porous medium is simulated to validate the present model. Simulation results reveal that gas slippage can enhance the flow rate in tight porous media, while stress sensitivity of permeability and porosity reduces the flow rate. The simulation results of gas flow in a porous medium with different mineral components show that the gas slippage and stress sensitivity of permeability and porosity not only affect the global velocity magnitude, but also have an effect on the flow field. In addition, gas flow in a porous medium with fractures is also investigated. It is found that the fractures along the pressure-gradient direction significantly enhance the total flow rate, while the fractures perpendicular to the pressure-gradient direction have little effect on the global permeability of the porous medium. For the porous medium without fractures, the gas-slippage effect is a major influence factor on the global permeability, especially under low pressure; for the porous medium with fractures, the stress-sensitivity effect plays a more important role in gas flow.


Author(s):  
Mohammad Amir Hasani ◽  
Mahmood Norouzi ◽  
Morsal Momeni Larimi ◽  
Reza Rooki

Cuttings transport from wellbore annulus to the surface via drilling fluids is one of the most important problems in gas and oil industries. In the present paper, the effects of viscoelastic property of drilling fluids on flow through wellbore annulus are studied numerically by use of computational fluid dynamics simulation in OpenFOAM software. This problem is simulated as the flow between two coaxial annulus cylinders and the inner cylinder is rotating through its axes. Here, the Giesekus model is used as the nonlinear constitutive equation. This model brings the nonlinear viscosity, normal stress differences, extensional viscosity and elastic property. The numerical solution is obtained using the second order finite volume method by considering PISO algorithm for pressure correction. The effect of elasticity, Reynolds number, Taylor number and mobility factor on the velocity and stress fields, pressure drop, and important coefficient of drilling mud flow is studied in detail. The results predicted that increasing elastic property of drilling mud lead to an initial sharp drop in the axial pressure gradient as well as Darcy-Weisbach friction coefficient. Increasing the Reynolds number at constant Taylor number, resulted an enhancing in the axial pressure drop of the fluid but Darcy-Weisbach [Formula: see text] friction coefficient mainly reduced.


2000 ◽  
Vol 123 (1) ◽  
pp. 133-139 ◽  
Author(s):  
Jenn-Jiang Hwang ◽  
Chau-Ching Lu

The effects of lateral-flow ejection 0<ε<1.0, pin shapes (square, diamond, and circular), and flow Reynolds number (6000<Re<40,000) on the endwall heat transfer and pressure drop for turbulent flow through a pin-fin trapezoidal duct are studied experimentally. A staggered pin array of five rows and five columns is inserted in the trapezoidal duct, with the same spacings between the pins in the streamwise and spanwise directions: Sx/d=Sy/d=2.5. Three different-shaped pins of length from 2.5<l/d<4.6 span the distance between two endwalls of the trapezoidal duct. Results reveal that the pin-fin trapezoidal duct with lateral-flow rate of ε=0.3-0.4 has a local minimum endwall-averaged Nusselt number and Euler number for all pin shapes investigated. The trapezoidal duct of lateral outlet flow only (ε=1.0) has the highest endwall heat transfer and pressure drop. Moreover, the square pin results in a better heat transfer enhancement than the diamond pin, and subsequently than the circular pin. Finally, taking account of the lateral-flow rate and the flow Reynolds number, the work develops correlations of the endwall-averaged heat transfer with three different pin shapes.


Author(s):  
Majid Nabavi ◽  
Luc Mongeau

In this study, two-dimensional laminar incompressible and turbulent compressible flow through the planar diffuser (gradual expansion) for different divergence half angles of the diffuser (θ), and different Reynolds numbers (Re) was numerically studied. The effects of θ on the critical Reynolds number at which the onset of asymmetric flow is observed, were investigated. In the laminar flow regime, it was observed that for every values of θ, there is a critical Re beyond which the flow is asymmetric. However, in the turbulent flow regime, for θ ≥ 20°, even at low Reynolds number the flow is asymmetric. Only for θ ≤ 10°, symmetric flow was observed below a critical Re.


1993 ◽  
Vol 115 (2) ◽  
pp. 239-242 ◽  
Author(s):  
E. Brundrett

A new pressure loss correlation predicts flow through screens for the wire Reynolds number range of 10−4 to 104 using the conventional orthogonal porosity and a function of wire Reynolds number. The correlation is extended by the conventional cosine law to include flow that is not perpendicular to the screen. The importance of careful specification of wire diameter for accurate predictions of porosity is examined. The effective porosity is influenced by the shape of the woven wires, by any local damage, and by screen tension.


Sign in / Sign up

Export Citation Format

Share Document