Contact Stress Analysis of Spiral Bevel Gears Using Finite Element Analysis

1995 ◽  
Vol 117 (2A) ◽  
pp. 235-240 ◽  
Author(s):  
G. D. Bibel ◽  
A. Kumar ◽  
S. Reddy ◽  
R. Handschuh

A procedure is presented for performing three-dimensional stress analysis of spiral bevel gears in mesh using the finite element method. The procedure involves generating a finite element model by solving equations that identify tooth surface coordinates. Coordinate transformations are used to orientate the gear and pinion for gear meshing. Contact boundary conditions are simulated with gap elements. A solution technique for correct orientation of the gap elements is given. Example models and results are presented.

2020 ◽  
Vol 10 (15) ◽  
pp. 5109 ◽  
Author(s):  
Yimeng Fu ◽  
Yaobing Zhuo ◽  
Xiaojun Zhou ◽  
Bowen Wan ◽  
Haoliang Lv ◽  
...  

The precise mathematical model for the tooth surface and transition surface of spiral bevel gears is derived. Taking a pair of spiral bevel gears of a heavy vehicle as an example of calculation and analysis, a finite element model of spiral bevel gears transmission system is established. Through the finite element tooth contact analysis under quasi-static loading and high loading condition, the influences of torque on the root stress distribution, contact stress, and transmission error are discussed, and the results are compared with the empirical formula results. Finally, a contact performance test bench of spiral bevel gear pair is developed, then the root bending stress, contact pattern, and transmission error tests are carried out. These experiment results are compared with analyzed ones, which showed a good agreement.


Author(s):  
Rulong Tan ◽  
Bingkui Chen ◽  
Changyan Peng ◽  
Dong Liang ◽  
Dongyun Xiang

This paper aims at obtaining the mathematical model of the general spiral bevel gears of local bearing contact from spatial conjugate curve theory. Differential geometry and gearing kinematics are introduced to derive this model. Meshing-correctly conditions are set in the theoretical derivation process. The final model is represented in the form of equations and inequalities. According to the arguments in this paper, a process of designing the tooth surface of spiral bevel gears of local bearing is proposed. Based on this process, the numerical example of a pair of these gears with specific profiles is represented by applying the finite element analysis. Results show that the magnitudes of the deviations between theoretical contact points and real contact points are small. Therefore, the results agree with the mathematical model of the spiral bevel gears of local bearing contact in this paper.


2014 ◽  
Vol 945-949 ◽  
pp. 822-825 ◽  
Author(s):  
Zheng Lin ◽  
Li Gang Yao ◽  
Quan Lin

The meshing contact analysis of double circular-arc spiral bevel gears for nutation drive is considered. Based on gear meshing theory, the mathematical models and meshing equation of the double circular-arc spiral bevel gears are developed. The contact trace satisfies the tooth surface equations and meshing equation simultaneously, and then the contact trace is solved by using mathematical software. The analysis of tooth surface contact pressure is simulated by finite element analysis software.


2010 ◽  
Vol 34-35 ◽  
pp. 566-570 ◽  
Author(s):  
Yu Tao Yan ◽  
Zhi Li Sun ◽  
R.J. Guo

Based on loaded tooth contact analysis of spiral bevel gears, the thermal analysis model and finite element model of spiral bevel gears were established by making use of tribological theory and thermal transferring theory. The distribution on transient temperature field of spiral bevel gears under loss of lubrication was found via finite element methods. The results are as follows: the sliding speed and normal load had obvious influence on friction heat. Transient temperature peak value of the gear tooth was obtained in midpoint position of the tooth contact path. The temperature gradient increases with the increase of meshing times of gear tooth, the transient temperature of the gear tooth surface had increased 32°C in one minute. However, the transient temperature of the tooth surface had increased 232°C in three minutes.


Author(s):  
Vilmos V. Simon

In this study an attempt is made to predict displacements and stresses in face-hobbed spiral bevel gears by using the finite element method. A displacement type finite element method is applied with curved, 20-node isoparametric elements. A method is developed for the automatic finite element discretization of the pinion and the gear. The full theory of the generation of tooth surfaces of face-hobbed spiral bevel gears is applied to determine the nodal point coordinates on tooth surfaces. The boundary conditions for the pinion and the gear are set automatically as well. A computer program was developed to implement the formulation provided above. By using this program the influence of design parameters and load position on tooth deflections and fillet stresses is investigated. On the basis of the results, obtained by performing a big number of computer runs, by using regression analysis and interpolation functions, equations for the calculation of tooth deflections and fillet stresses are derived.


2018 ◽  
Vol 10 (7) ◽  
pp. 168781401879065 ◽  
Author(s):  
Shuai Mo ◽  
Shengping Zhu ◽  
Guoguang Jin ◽  
Jiabei Gong ◽  
Zhanyong Feng ◽  
...  

High-speed heavy-load spiral bevel gears put forward high requirement for flexural strength; shot peening is a technique that greatly improves the bending fatigue strength of gears. During shot peening, a large number of fine pellets bombard the surface of the metal target material at very high speeds and let the target material undergo plastic deformation, at the same time strengthening layer is produced. Spiral bevel gear as the object of being bombarded inevitably brought the tooth surface micro-morphology changes. In this article, we aim to reveal the effect of microtopography of tooth shot peening on gear lubrication in spiral bevel gear, try to establish a reasonable description of the microscopic morphology for tooth surface by shot peening, to reveal the lubrication characteristics of spiral bevel gears after shot peening treatment based on the lubrication theory, and do comparative research on the surface lubrication characteristics of a variety of microstructures.


Author(s):  
Zhang-Hua Fong ◽  
Chung-Biau Tsay

Abstract Kinematical optimization and sensitivity analysis of circular-cut spiral bevel gears are investigated in this paper. Based on the Gleason spiral bevel gear generator and EPG test machine, a mathematical model is proposed to simulate the tooth contact conditions of the spiral bevel gear set. All the machine settings and assembly data are simulated by simplified parameters. The tooth contact patterns and kinematic errors are obtained by the proposed mathematical model and the tooth contact analysis techniques. Loaded tooth contact patterns are obtained by the differential geometry and the Hertz contact formulas. Tooth surface sensitivity due to the variation of machine settings is studied. The corrective machine settings can be calculated by the sensitive matrix and the linear regression method. An optimization algorithm is also developed to minimize the kinematic errors and the discontinuity of tooth meshing. According to the proposed studies, an improved procedure for development of spiral bevel gears is suggested. The results of this paper can be applied to determine the sensitivity and precision requirements in manufacturing, and improve the running quality of the spiral bevel gears. Two examples are presented to demonstrate the applications of the optimization model.


2013 ◽  
Vol 442 ◽  
pp. 229-232 ◽  
Author(s):  
Li Mei Wu ◽  
Fei Yang

According to the cutting theory of involute tooth profile, established an exact three-dimensional parametric model by UG. Used ABAQUS to crate finite element model for gear meshing. After simulated the meshing process, discussed the periodicity of the tooth surface contact stress. Based on the result of finite element analysis, made a comparison of the maximum contact stress between finite element solution and Hertz theoretical solution, analyzed the contact stress distribution on tooth width, and researched the effect of friction factor on contact stress. All that provided some theoretical basis for gear contact strength design.


2005 ◽  
Vol 09 (01) ◽  
pp. 21-33
Author(s):  
Poon-Ung Chieng ◽  
Ching-I Chen ◽  
Chi-Chang Lin ◽  
Ching-Lin Tsai ◽  
Po-Quang Chen

Background: Current total hip prosthesis lack an accurate individualized finite element model to assure an accurate fit, and further require amputation of a possibly healthy femoral neck. Methods: This research presents a new methodology for performing an automated three-dimensional finite element meshing for a new type of total hip prosthesis. The stress analysis for this new design, known as Non-stemmed Anatomical Total Hip Prosthesis, is based on the methodology proposed here. The merit of this method is that the automated meshing process can be produced by using ANSYS software alone, without the need for a complicated, self-developed meshing interface program. Results: This new methodology provides a smooth boundary around the contour of the femur and the interface between the femur and the Non-stemmed Anatomical Total Hip Prosthesis, as well as avoiding additional complications. This newly designed prosthesis involves minimal modification of the intact femoral neck alignment after total hip replacement, provided that the femoral neck is still healthy. The main body of this new prosthesis is a conical-shaped mask that tightly embraces the femoral neck. The bottom skirt of this mask contacts the greater and lesser trochanter in such a way that maintains the mask in the desired position using a screw through the axis of the femoral neck. Finite element stress analysis is performed to compare the stress distribution of the intact femur and the femur after implantation of the Non-stemmed Anatomical Total Hip Prosthesis. Conclusions: Hopefully, this new prosthesis will be the method of choice for patients who have healthy femoral necks, but sick femoral heads. Further research can focus on applying this new methodology to other bone structures. Level of Evidence: Therapeutic study, Level IV.


2010 ◽  
Vol 132 (2) ◽  
Author(s):  
Ligang Yao ◽  
Bing Gu ◽  
Shujuan Haung ◽  
Guowu Wei ◽  
Jian S. Dai

The purpose of this paper is to propose a pair of external and internal spiral bevel gears with double circular-arc in the nutation drive. Based on the movement of nutation, this paper develops equations of the tooth profiles for the gear set, leading to the mathematical modeling of the spiral bevel gear with a constant helical angle gear alignment curve, enabling the tooth surface to be generated, and permitting the theoretical contacting lines to be produced in light of the meshing function. Simulation and verification are carried out to prove the mathematical equations. Numerical control (NC) simulation of machining the external and internal double circular-arc spiral bevel gears is developed, and the spiral gears were manufactured on a NC milling machine. The prototype of the nutation drive is illustrated in the case study at the end of this paper.


Sign in / Sign up

Export Citation Format

Share Document