An Efficient Way of Calculating Temperatures in the Strip Rolling Process

1998 ◽  
Vol 120 (1) ◽  
pp. 93-100 ◽  
Author(s):  
Der-Form Chang

The two-dimensional heat transfer between the strip and rolls in strip rolling is modeled by one-dimensional heat conduction equations adopting Lagrangian coordinate systems on the contact surfaces. Finite difference formulations are used in the rolling direction and analytical solutions are applied normal to this direction, making computation more efficient. Heat transfer in the sticking region is considered. The influence of real area of contact on heat transfer is also taken into account, resulting in a method capable of modeling the strip rolling process operated in any of several different lubrication regimes. This method provides good temperature predictions.

2014 ◽  
Vol 496-500 ◽  
pp. 452-455
Author(s):  
Chi Chih Shen

A three dimensional numerical simulation model of metal rolling formation is developed from the theoretical model. In this theoretical model, the two variables of element deformation and temperature variation are placed in a variable matrix. The thermal elastic plastic rigid matrix and heat transfer rigid matrix are placed in the same expansion rigid matrix. Furthermore, the numerical simulation analytical model developed in this paper was used to simulate aluminum strip rolling.


2011 ◽  
Vol 415-417 ◽  
pp. 1391-1394
Author(s):  
Rui Bin Mei ◽  
Chang Sheng Li ◽  
Xiang Hua Liu

It is necessary to know the heat transfer intensity for predicting temperature distribution in the hot strip rolling process. The HTC (heat transfer coefficient) was usually obtained by the experiments and mathematical model. In this paper the HTC prediction was discussed based on the measured or target temperature by the proposed finite element method (FEM). The temperature evolution and HTC in the hot strip rolling process according to a certain plant were analyzed by the iteration calculation. The result shows that the HTC between strip and work roll was much more than the value in the air cooling and water cooling process. Furthermore, the HTC value is lower in the air cooling process compared with that of water cooling. The maximum and minimum value of HTC were about 1.5×105 (W/m2.K) and 80(W/m2.K) respectively. The temperature in the rough rolling according to the predicted HTC has been solved and the calculated results have a good agreement to the meausred value. Therefore, the research could be used to control the temperature distribution accurately and optimize the parameters.


2010 ◽  
Vol 260 ◽  
pp. 012005 ◽  
Author(s):  
H Bufferand ◽  
G Ciraolo ◽  
Ph Ghendrih ◽  
P Tamain ◽  
F Bagnoli ◽  
...  

2008 ◽  
Vol 136 (10) ◽  
pp. 3863-3872 ◽  
Author(s):  
Kerry Emanuel ◽  
Jeff Callaghan ◽  
Peter Otto

Tropical cyclones moving inland over northern Australia are occasionally observed to reintensify, even in the absence of well-defined extratropical systems. Unlike cases of classical extratropical rejuvenation, such reintensifying storms retain their warm-core structure, often redeveloping such features as eyes. It is here hypothesized that the intensification or reintensification of these systems, christened agukabams, is made possible by large vertical heat fluxes from a deep layer of very hot, sandy soil that has been wetted by the first rains of the approaching systems, significantly increasing its thermal diffusivity. To test this hypothesis, simulations are performed with a simple tropical cyclone model coupled to a one-dimensional soil model. These simulations suggest that warm-core cyclones can indeed intensify when the underlying soil is sufficiently warm and wet and are maintained by heat transfer from the soil. The simulations also suggest that when the storms are sufficiently isolated from their oceanic source of moisture, the rainfall they produce is insufficient to keep the soil wet enough to transfer significant quantities of heat, and the storms then decay rapidly.


2011 ◽  
Vol 702-703 ◽  
pp. 68-75 ◽  
Author(s):  
Hirofumi Inoue

In order to develop favorable textures for deep drawing of Al-Mg-Si and Mg-Al-Zn alloys that are promising as automotive body panels, we have adopted the symmetric/asymmetric combination rolling (SACR) process consisting of conventional symmetric rolling and subsequent asymmetric rolling at relatively low reduction. The combination of symmetric cold rolling and asymmetric warm rolling for AA6022 sheets leads to the formation of “TD-rotated β-fiber texture”, resulting in the evolution of {111} recrystallization texture after solution treatment at a high temperature. The SACR processed and solution-treated sheets show a high average r-value with small in-plane anisotropy, and consequently the limiting drawing ratio increases significantly, compared to that of the cold-rolled and solution-treated sheets. In the case of AZ31 magnesium alloy, the SACR process by hot rolling causes the formation of a unique texture, which shows two (0001) poles with tilt angles of 0 and −40 degrees from the normal direction (ND) toward the rolling direction (RD). In addition, subsequent annealing weakens intensity of the double-peak texture, so that the drawability is greatly improved in comparison with that of the conventional warm-rolled sheets with a strong basal texture. At the same time, yield strength decreases to some extent, but the SACR processed and annealed sheets exhibit a good balance of strength and formability due to a mixed texture with basal and tilt components.


Sign in / Sign up

Export Citation Format

Share Document