Modelling, Identification and Control of Thermal Deformation of Machine Tool Structures, Part 1: Concept of Generalized Modelling

1998 ◽  
Vol 120 (3) ◽  
pp. 623-631 ◽  
Author(s):  
S. Fraser ◽  
M. H. Attia ◽  
M. O. M. Osman

With the increasing demand for improved machining accuracy in recent years, the problem of thermal deformation of machine tool structures is becoming more critical than ever. In spite of the effort for improving the thermal deformation characteristics of machine tools at the design stage, there are always some residual errors that have to be compensated for during machining. The design of a generic multi-axis control system requires the development of two models to estimate the transient thermal load and to estimate the thermal deformation of the structure in real-time. To satisfy the stringent accuracy and stability requirements of these two models, a new concept of “generalized modelling” is introduced. It combines mathematical modelling with empirical calibration, and is based on the existence of a mathematical similarity between the real process and a simplified model, referred to as the fundamental generalized problem FGP. To obtain an analytical description of the heat transfer and thermal deformation processes in machine tool structures, an analytical solution of the FGP, which consists of an infinite plate with a central ring heat source, is derived using Hankel transformation. Computer-simulated test cases are presented to demonstrate the use of generalized modelling for predicting the transient thermal response in a complex machine tool structure. It was also shown how the generalized model can accurately extrapolate limited measurement data to predict the entire temperature field. The results confirmed that the generalized model can reproduce the accuracy of the finite-element solution, but two orders of magnitude faster.

1998 ◽  
Vol 120 (3) ◽  
pp. 632-639 ◽  
Author(s):  
S. Fraser ◽  
M. H. Attia ◽  
M. O. M. Osman

With the ever increasing demand for higher machining accuracy at lower cost, thermal deformation of machine tool structures has to be minimized at the design stage, and compensated for during operation. To compensate for this type of error, two real-time process models are required to identify the magnitude of the transient thermal load and to estimate the relative thermal displacement between the tool and the work piece. Special considerations should be given to the solution of the first ill-posed inverse heat conduction model IHCP. In this paper, the concept of generalized modelling is extended to the thermal deformation problem. The results of this analysis is used to develop expressions for the generalized transfer functions of the thermal, and thermal deformation response of the machine tool structure. These transfer functions are the basic building blocks for real-time solution of the IHCP and then the deformation problem. The latter acts as a feed-back signal to the control system. Finite element simulation of the temperature field and the thermal deformation of a machine tool structure confirmed that the generalized transfer function approach can reproduce the accuracy of the finite element model but two orders of magnitude faster.


1999 ◽  
Vol 121 (3) ◽  
pp. 517-523 ◽  
Author(s):  
S. Fraser ◽  
M. H. Attia ◽  
M. O. M. Osman

Machining accuracy is more often governed by thermal deformation of the machine tool structure than by static stiffness and dynamic rigidity. Since thermally induced errors cannot completely be eliminated at the design stage, the use of control and compensation systems is an inevitable course of action. Existing control systems are based on two different approaches; the use of empirical compensation function, and on-line execution of numerical simulation models. To overcome the limitations of these methods, a new control system has recently been proposed by the authors. This system, which is based on the concept of generalized modelling, incorporates a realtime inverse heat conduction problem IHCP solver to estimate the transient thermal load applied to the structure. With this information, the relative thermal deformation between the tool and the workpiece is estimated and used as a feedback control signal. In previous parts of this series, computer simulation test cases were carried out to examine the dynamic response, accuracy and stability of the system. In the present study, the performance of various components of the control system, specifically, the IHCP solver, the thermal deformation estimator, and the feedback controller are verified experimentally using a three-component structure. The results showed that the derived generalized thermoelastic transfer functions and algorithms are indeed quite accurate in predicting and controlling the transient thermoelastic response behaviour of a predominantly linear structure. The results showed that the a IHCP solver is inherently stable even when the temperature measurements are contaminated with random errors. The excellent computational efficiency of the integrated system is shown to be well suited for real-time control applications involving multi-dimensional structures, achieving a control cycle of less than 0.5 second. The experimental results showed that in real structures higher modes can be present, and therefore, a fourth order deformation model should be used to improve the prediction accuracy. The proposed PID control system, with feedforward branches, was capable of reducing thermal deformations of the order of 200 μm to levels below ±8 μm. These results also demonstrated the effectiveness of artificial heat sources as a control actuation mechanism, in spite of their inherent limitations, namely, thermal inertia, coupledness, and unidirectionality.


Author(s):  
S. Fraser ◽  
Helmi Attia ◽  
M. O. M. Osman

Machine tool structures cannot be fully optimized at the design stage to cover the wide range of operating conditions. Therefore, reliable control systems emerge as the logical solution to compensate for thermal errors. Due to the difficulty of measuring the relative thermal displacement δ between the tool and the workpiece during machining, δ has to be accurately estimated in real-time. A new concept of adaptive modeling is introduced to develop control-based dynamic models to predict and compensate for thermal deformation of nonlinear complex machine tool structures. A key element of this approach is to replace the changes in the contact pressures along the joint by fictitious contact heat sources FCHS. This allows us to track the system nonlinearity through temperature measurements and real-time inverse heat conduction IHCP solution. The proposed approach dealt successfully with a number of challenges; namely, the non-uniqueness of the problem, and the lack of sufficient conditions to identify each of such unusual FCHS separately. The results showed that the models are capable of satisfying the accuracy, stability and computational efficiency requirements, even when the temperature measurement signal is contaminated with random noise. The results also showed that the thermal deformation transfer function behaves as low-pass filters, and as such it attenuates the high frequency noise associated with temperature measurement error.


2014 ◽  
Vol 556-562 ◽  
pp. 1354-1357
Author(s):  
Li Gong Cui ◽  
Gui Qiang Liang ◽  
Fang Shao

This paper presents a mathematical method to analyze the influence of each machine tool part deformation on the machining accuracy. Taking a 3-axis machine tool as an example, this paper divides the machine tool into the cutting tool sub-system and workpiece sub-system. Taking the deformation of lower surface of the machine bed as the research target, the mathematical model of the deformation on the displacement of the cutting point was established. In order to distribute the stiffness of each part, the contribution degree of each part on the machining accuracy was analyzed. Using this mathematical model, the stiffness of each part can be distributed at the design stage of the machine tool, and the machining accuracy of the machine tool can be improved economically.


2019 ◽  
Vol 35 (6) ◽  
pp. 887-900 ◽  
Author(s):  
K.-Y. Li ◽  
W.-J. Luo ◽  
M.-H. Yang ◽  
X.-H. Hong ◽  
S.-J. Luo ◽  
...  

ABSTRACTIn this study, the thermal deformation of a machine tool structure due to the heat generated during operation was analyzed, and embedded cooling channels were applied to exchange the heat generated during the operation to achieve thermal error suppression. Then, the finite volume method was used to simulate the effect of cooling oil temperature on thermal deformation, and the effect of thermal suppression was experimentally studied using a feed system combined with a cooler to improve the positioning accuracy of the machine tool. In this study, the supply oil temperature in the structural cooling channels was found to significantly affect the position accuracy of the moving table and moving carrier. If the supply oil temperature in the cooling channels is consistent with the operational ambient temperature, the position accuracy of the moving table in the Y direction and the moving carrier in the X and Z directions has the best performance under different feed rates. From the thermal suppression experiments of the embedded cooling channels, the positioning accuracy of the feed system can be improved by approximately 25.5 % during the dynamic feeding process. Furthermore, when the hydrostatic guideway is cooled and dynamic feeding is conducted, positioning accuracy can be improved by up to 47.8 %. The machining accuracy can be improved by approximately 60 % on average by using the embedded cooling channels in this study. Therefore, thermal suppression by the cooling channels in this study can not only effectively improve the positioning accuracy but also enhance machining accuracy, proving that the method is effective for enhancing machine tool accuracy.


1986 ◽  
Vol 108 (3) ◽  
pp. 323-329 ◽  
Author(s):  
M. Yoshimura

This paper proposes a method for evaluating forced and self-excited vibrations at the design stage of machine-tool structural systems. Cross modal flexibilities between the forced excited and the displacement pick-up points are analyzed. The relationships between the highest allowable values of receptance and vibrational displacement, and the static compliance and modal flexibility are clarified. Then the algorithms of the evaluative methods which use those analyses are given. Using the proposed method, natural modes which must be disregarded in the evaluation of the characteristics can be determined, (1) even when directional orientations of the excited force at points in regard change greatly as a result of states of operations or cannot be definitely determined, and (2) even if damping properties are not clearly known. Designers can judge whether or not a given structural design has vibrational defects. The procedures of the evaluative method are exemplified with numerical examples.


2001 ◽  
Author(s):  
Youji Ma ◽  
Jingxia Yuan ◽  
Jun Ni

Abstract Thermal loads of internal and external sources cause thermal deformations of a machine tool structure and affect its accuracy. Software-based real-time error compensation method is an effective way to reduce the thermal errors. However, lack of knowledge of thermal loads impedes greater success. In this paper, a method of inverse heat transfer analysis is developed that, using temperature measurement data from multiple sensors mounted on a machine tool structure, the transient thermal loads of multiple heat sources can be estimated simultaneously. The method uses modal method and is carried out in frequency domain. The temperature measurement data are first transformed into frequency spectra through DFT. The modal method of inverse frequency response analysis is then used to obtain the thermal load spectra. Finally the thermal loads are recovered from their spectra through IDFT. The estimated thermal loads play crucial roles in estimating transient temperature fields and transient thermal errors of a machine tool structure. The issues of mode truncations and frequency truncations, and their effects on the efficiency and stability of the method are also discussed with simulation results. Finally, experimental results on a machining center column are presented.


2020 ◽  
Vol 10 (11) ◽  
pp. 3991
Author(s):  
Kun-Ying Li ◽  
Win-Jet Luo ◽  
Shih-Jie Wei

This study presents a multiphysics simulation analysis that was performed for the cooling channel of a built-in spindle. The design of experiments (DOE) method was employed to optimize the dimension of the cooling channel, and a practical machining experiment was performed to validate the effect of the design. In terms of the temperature, pressure drop, thermal deformation, manufacturing cost, and initial cost considerations, the paralleling type cooling channel of the front bearing and the helical type cooling channel of the motor were adopted in the study. After the optimal design of the cooling channel was applied, the bearing temperature was reduced by a maximum decrease of 6.7 °C, the spindle deformation decreased from 53.8 μm to 30.9 μm, and the required operational time for attaining the steady state of the machine tool was shortened from 185.3 min to 132.6 min. For the machining validation, the spindle with the optimal cooling channel design was employed for vehicle part machining, the flatness of the finished workpiece was increased by 61.3%, and the surface roughness (Ra) was increased by 52%. According to the findings for the optimal cooling channel, when the spindle cooling efficiency is increased by the optimal cooling channel design, the thermal deformation and warm-up period can be reduced effectively, and the machining precision can be enhanced. This method is an efficient way to increase the accuracy of a machine tool.


Sign in / Sign up

Export Citation Format

Share Document