Prediction of Equivalent Radial Loads for Tapered Roller Bearings

1996 ◽  
Vol 118 (3) ◽  
pp. 651-656
Author(s):  
Ted E. Bailey ◽  
Robert W. Frayer

Calculating the fatigue life of a tapered roller bearing has become a rather straightforward exercise thanks to the accumulation of rolling contact fatigue data and the subsequent development of formulation relating applied loading to bearing fatigue life. An integral part of the prediction process is to define an equivalent radial load (EQRL) by combining a bearing’s applied radial and thrust loading into a single entity. This paper reviews currently accepted formulation and offers a potentially more accurate alternative method for estimating the EQRL of a tapered roller bearing than does the current AFBMA standard.

Author(s):  
Van-Canh Tong ◽  
Seong-Wook Hong

Angular misalignment, defined as the tilted angle between the outer ring and inner ring, is unavoidable in most applications of tapered roller bearings (TBRs) due to many potential causes such as shaft deflection, initial mounting error, bearing geometry inaccuracy, etc. The occurrence of TRB misalignment introduces considerable changes into the contact load and the pressure between rolling elements and the raceways and, thus, greatly influences the bearing life. However, few research results are available on the effects of angular misalignment in TRBs. This paper presents the fatigue life analysis for TRBs with consideration for angular misalignment effects. To this end, a mathematical TRB model is developed to provide a comprehensive fatigue life analysis for TRBs subjected to angular misalignment. The presented model is verified by comparing the estimated fatigue lives under several loading conditions with those from a reference program. Then, the effects of angular misalignment on the fatigue life of TRBs are evaluated systematically. The simulation results show the importance of TRB alignment for the investigated TRB by demonstrating that small amount of angular misalignment leads to a substantial reduction in the fatigue life of the TRB regardless of loading conditions. The results address the necessity of misalignment effects analysis for TRBs.


Author(s):  
Hiroki Fujiwara ◽  
Tatsuo Kawase ◽  
Takuji Kobayashi ◽  
Kazuto Yamauchi

A logarithmic profile is an essentially optimal geometry for rolling machine elements such as bearing rollers and raceways. Under most conditions of loading, it yields less stresses to give longer endurance. Lundberg first suggested the basic profile, and some researchers followed him by modifying it to satisfy engineering requirements. In this paper, the authors propose a mathematical optimization method for various profiles including a logarithmic one in roller bearing applications. Moreover, rolling contact fatigue life tests are carried out to make a comparison among logarithmically-crowned, standard partially-crowned and modified partially-crowned rollers. Results show that the logarithmic and modified partially crowned rollers are comparable in fatigue life, although the logarithmic rollers require less working effort to process the crowning.


2020 ◽  
Vol 2020 (0) ◽  
pp. S11222
Author(s):  
Yasuyoshi TOZAKI ◽  
Koki NISHIKAWA ◽  
Makishi TAKEYASU ◽  
Kazuhiro MAEKAWA ◽  
Takuzi YAMAMOTO

Metals ◽  
2020 ◽  
Vol 10 (10) ◽  
pp. 1339
Author(s):  
Bernd Breidenstein ◽  
Berend Denkena ◽  
Alexander Krödel ◽  
Vannila Prasanthan ◽  
Gerhard Poll ◽  
...  

By combining different materials, for example, high-strength steel and unalloyed structural steel, hybrid components with specifically adapted properties to a certain application can be realized. The mechanical processing, required for production, influences the subsurface properties, which have a deep impact on the lifespan of solid components. However, the influence of machining-induced subsurface properties on the operating behavior of hybrid components with a material transition in axial direction has not been investigated. Therefore, friction-welded hybrid shafts were machined with different process parameters for hard-turning and subsequent deep rolling. After machining, subsurface properties such as residual stresses, microstructures, and hardness of the machined components were analyzed. Significant influencing parameters on surface and subsurface properties identified in analogy experiments are the cutting-edge microgeometry, S¯, and the feed, f, during turning. The deep-rolling overlap, u, hardly changes the residual stress depth profile, but it influences the surface roughness strongly. Experimental tests to determine fatigue life under combined rolling and rotating bending stress were carried out. Residual stresses of up to −1000 MPa, at a depth of 200 µm, increased the durability regarding rolling-contact fatigue by 22%, compared to the hard-turned samples. The material transition was not critical for failure.


1982 ◽  
Vol 104 (3) ◽  
pp. 330-334 ◽  
Author(s):  
A. H. Nahm

Accelerated rolling contact fatigue tests were conducted to study the effect of grain flow orientation on the rolling contact fatigue life of vacuum induction melted and vacuum arc remelted (VIM-VAR) AISI M-50. Cylindrical test bars were prepared from a billet with 0, 45, and 90 deg orientations relative to billet forging flow direction. Tests were run at a Hertzian stress of 4,826 MPa with a rolling speed of 12,500 rpm at room temperature, and lubricated with Type I (MIL-L-7808G) oil. It was observed that rolling contact fatigue life increased when grain flow line direction became more parallel to the rolling contact surface.


Author(s):  
John W. Lucek

Rolling-contact fatigue test methods were used to measure the wear performance of several silicon nitride materials. Sintered, hot pressed and hot isostatically pressed materials exhibited wear rates ranging over three orders of magnitude. Hot isostatically pressed materials had the lowest wear rates. Despite the disparity in wear performance, all materials tested had useful rolling-contact fatigue lives compared to steel. Fatigue life estimates, failure modes, and rolling wear performance for theses ceramics are compared to M-50 steel. This work highlights the rapid contact stress reductions that occur due to conformal wear in rolling-contact fatigue testing. Candidate bearing materials with unacceptably high wear rates may exhibit useful fatigue lives. Rolling contact bearing materials must possess useful wear and fatigue resistance. Proper performance screening of candidate bearing materials must describe the failure mode, wear rate, and the fatigue life. Guidelines for fatigue testing methods are proposed.


Sign in / Sign up

Export Citation Format

Share Document