Buckling of Externally Pressurized Prolate Ellipsoidal Domes

2008 ◽  
Vol 130 (1) ◽  
Author(s):  
P. Smith ◽  
J. Błachut

Details are given of a numerical and experimental study into buckling of steel ellipsoidal domes loaded by static external pressure. A range of geometries and thicknesses of domes is examined, as is the influence of different boundary conditions. Shells are examined on the basis of having the same mass. The main focus of the study is on prolate domes, i.e., those taller than a hemisphere of the same base radius. Numerical predictions are confirmed by pressurizing six laboratory scale prolate domes to destruction. Details are given of the manufacture and test procedure for the domes. The adverse effects of variations in shape and wall thickness are discussed, and finite element predictions are made for geometrically imperfect domes. Correlation between the two sets of results is good. Numerically and experimentally obtained results are related to the current design codes: ASME Boiler and Pressure Vessel Code, Sec. 8, Division 2 (described hereon as ASME VIII), PD5500, and ECCS recommendations (ASME B&PV Code, 2004 ed., Sec. 8, Division 2, New York, NY; BSI 2003 “Published Document PD5500: Specification for Unfired Pressure Vessels,” BSI London; European Convention for Constructional Steelwork Recommendations, 1988 “Buckling of Stell Shells-European Recommendations,” ECCS-TWG 8.4, 4th ed., Brussels), which at present make no provision for prolate domes. Suggestions are made for the possible inclusion of such domes into the standards.

Author(s):  
P. Smith ◽  
J. Blachut

Details are given of a numerical and experimental study into buckling of steel ellipsoidal domes loaded by static external pressure. A range of geometries and thicknesses of domes is examined, as is the influence of different boundary conditions. Shells are examined on the basis of having the same mass. The main focus of the study is on prolate domes, i.e., those taller than a hemisphere of the same base radius. Numerical predictions are confirmed by pressurising six laboratory scale prolate domes to destruction. Details are given of the manufacture and test procedure for the domes. The adverse effects of variations in shape, and wall thickness are discussed, and FE predictions are made for geometrically imperfect domes. Correlation between the two sets of results is good. Numerical and experimentally obtained results are related to the current design codes: ASME Boiler & Pressure Vessel Code, Section VIII, Division 2 (described hereon as ASME VIII), PD5500, and ECCS recommendations [1–3], which at present make no provision for prolate domes. Suggestions are made for the possible inclusion of such domes into the standards.


2013 ◽  
Vol 66 (1) ◽  
Author(s):  
J. Błachut

This review aims to complement a milestone monograph by Singer et al. (2002, Buckling Experiments—Experimental Methods in Buckling of Thin-Walled Structures, Wiley, New York). Practical aspects of load bearing capacity are discussed under the general umbrella of “buckling.” Plastic loads and burst pressures are included in addition to bifurcation and snap-through/collapse. The review concentrates on single and combined static stability of conical shells, cylinders, and their bowed out counterpart (axial compression and/or external pressure). Closed toroidal shells and domed ends onto pressure vessels subjected to internal and/or external pressures are also discussed. Domed ends include: torispheres, toricones, spherical caps, hemispheres, and ellipsoids. Most experiments have been carried in metals (mild steel, stainless steel, aluminum); however, details about hybrids (copper-steel-copper) and shells manufactured from carbon/glass fibers are included in the review. The existing concerns about geometric imperfections, uneven wall thickness, and influence of boundary conditions feature in reviewed research. They are supplemented by topics like imperfections in axial length of cylinders, imperfect load application, or erosion of the wall thickness. The latter topic tends to be more and more relevant due to ageing of vessels. While most experimentation has taken place on laboratory models, a small number of tests on full-scale models are also referenced.


Author(s):  
Gurinder Singh Brar ◽  
Yogeshwar Hari ◽  
Dennis K. Williams

This paper presents the comparison of a reliability technique that employs a Fourier series representation of random asymmetric imperfections in a cylindrical pressure vessel subjected to external pressure. Comparison with evaluations prescribed by the ASME Boiler and Pressure Vessel Code, Section VIII, Division 2 Rules for the same shell geometries are also conducted. The ultimate goal of the reliability type technique is to predict the critical buckling load associated with the chosen cylindrical pressure vessel. Initial geometric imperfections are shown to have a significant effect on the load carrying capacity of the example cylindrical pressure vessel. Fourier decomposition is employed to interpret imperfections as structural features that can be easily related to various other types of defined imperfections. The initial functional description of the imperfections consists of an axisymmetric portion and a deviant portion, which are availed in the form of a double Fourier series. Fifty simulated shells generated by the Monte Carlo technique are employed in the final prediction of the critical buckling load. The representation of initial geometrical imperfections in the cylindrical pressure vessel requires the determination of appropriate Fourier coefficients. Multi-mode analyses are expanded to evaluate a large number of potential buckling modes for both predefined geometries and associated asymmetric imperfections as a function of position within a given cylindrical shell. The probability of the ultimate buckling stress that may exceed a predefined threshold stress is also calculated. The method and results described herein are in stark contrast to the “knockdown factor” approach as applied to compressive stress evaluations currently utilized in industry. Recommendations for further study of imperfect cylindrical pressure vessels are also outlined in an effort to improve on the current design rules regarding column buckling of large diameter pressure vessels designed in accordance with ASME Boiler and Pressure Vessel Code, Section VIII, Division 2 and ASME STS-1.


Author(s):  
Chithranjan Nadarajah ◽  
Benjamin F. Hantz ◽  
Sujay Krishnamurthy

Abstract The current design by analysis for protection against collapse from buckling in ASME Section VIII, Division 2, B&PV Code [8] has three different methods. However, these is no background bases for the three methods and analyst have found that the elastic plastic collapse analysis will give overly conservative results when compared with design by rule. Therefore, this study was undertaken to resolve this concern and develop a new procedure for buckling analysis to be implemented in the ASME Section VIII, Division 2, B&PV Code, Part 5.


1981 ◽  
Vol 16 (3) ◽  
pp. 171-186 ◽  
Author(s):  
P Stanley ◽  
T D Campbell

Very thin cylindrical pressure vessels with torispherical end-closures have been tested under internal pressure until buckles developed in the knuckles of the ends. These were prototype vessels in an austenitic stainless steel. The preparation of the ends and the closed test vessels is outlined, and the instrumentation, test installation, and test procedure are described. Results are given and discussed for three typical ends (diameters 54, 81, and 108in.; thickness to diameter ratios 0.00237, 0.00158, and 0.00119). These include measured thickness and curvature distributions, strain data and the derived elastic stress indices, and pole deflection measurements. Some details of the observed time-dependent plasticity (or ‘cold creep’) are given. Details of two types of buckle that developed eventually in the vessel ends are also reported.


2006 ◽  
Vol 13-14 ◽  
pp. 127-132 ◽  
Author(s):  
Gerold Lackner ◽  
Peter Tscheliesnig

Acoustic emission testing (AT) is in Europe an already well established non-destructive testing (NDT) method. Qualification requirements as well as certification of testing personnel are laid down in European standard EN 473. A widespread application of AT deals with testing of unfired pressure vessels for re-qualification after a certain period of service (repetition test). The advantages of applying AT compared to the traditional procedure of hydrostatic test plus visual inside inspection are numerous. Just to name the most important: reduction of downtime, omitting of residual humidity and no risk of product contamination with water. It is a fact that AT provides much more useful information concerning the condition of the pressure vessel under test than a simple ‘passed’ or ‘not passed’ obtained usually by a hydrostatic test. This contribution gives two examples of practical experience, where severe corrosion defects have been detected by AT. The defects have been found in both cases on the vessel’s shell under the thermal insulation, where they have been hidden undetected for years. It can be assumed that even the vessel with the most severe damage (loss of more than 50% of the nominal wall thickness) would have passed the traditional repetition test procedure and that failure within the following service period would have occurred. In contrary to this scenario, AT enabled the vessel operator to perform appropriate repair in time.


2006 ◽  
Vol 129 (1) ◽  
pp. 211-215 ◽  
Author(s):  
John D. Fishburn

Within the current design codes for boilers, piping, and pressure vessels, there are many different equations for the thickness of a cylindrical section under internal pressure. A reassessment of these various formulations, using the original data, is described together with more recent developments in the state of the art. A single formula, which can be demonstrated to retain the same design margin in both the time-dependent and time-independent regimes, is shown to give the best correlation with the experimental data and is proposed for consideration for inclusion in the design codes.


Author(s):  
Hilda B. Klasky ◽  
B. Richard Bass ◽  
Terry L. Dickson ◽  
Sarma B. Gorti ◽  
Randy K. Nanstad ◽  
...  

The Oak Ridge National Laboratory (ORNL) performed a detailed technical review of the 2015 Electrabel (EBL) Safety Cases prepared for the Belgium reactor pressure vessels (RPVs) at Doel 3 and Tihange 2 (D3/T2). The Federal Agency for Nuclear Control (FANC) in Belgium commissioned ORNL to provide a thorough assessment of the existing safety margins against cracking of the RPVs due to the presence of almost laminar flaws found in each RPV. Initial efforts focused on surveying relevant literature that provided necessary background knowledge on the issues related to the quasi-laminar flaws observed in D3/T2 reactors. Next, ORNL proceeded to develop an independent quantitative assessment of the entire flaw population in the two Belgian reactors according to the American Society of Mechanical Engineers (ASME) Boiler and Pressure Vessel Code, Section XI, Appendix G, “Fracture Toughness Criteria for Protection Against Failure,” New York (both 1992 and 2004 versions). That screening assessment of the EBL-characterized flaws in D3/T2 used ORNL tools, methodologies, and the ASME Code Case N-848, “Alternative Characterization Rules for Quasi-Laminar Flaws”. Results and conclusions derived from comparisons of the ORNL flaw acceptance assessments of D3/T2 with those from the 2015 EBL Safety Cases are presented in the paper. The ORNL screening analyses identified fewer flaws than EBL that were not compliant with the ASME Section XI (1992) criterion; the EBL criterion imposed additional conservatisms not included in ASME Section XI. Furthermore, ORNL’s application of the updated ASME Section XI (2004) criterion produced only four non-compliant flaws, all due to design-basis loss-of-coolant loading transients. Among the latter, only one flaw remained non-compliant when analyzed using the warm-prestress (WPS) cleavage fracture model typically applied in USA flaw assessments. ORNL’s independent refined analysis of that flaw (#1660, which was also non-compliant in the EBL screening assessments) rendered it compliant when modeled as a more realistic individual quasi-laminar flaw using a 3-dimensional XFEM (eXtended Finite Element Method) approach available in the ABAQUS© finite element code. Taken as a whole, the ORNL-specific results and conclusions confirmed the structural integrity of Doel 3 and Tihange 2 under all design transients with ample margin in the presence of the 16,196 detected flaws.


Sign in / Sign up

Export Citation Format

Share Document