Development of Blade Profiles for Low-Pressure Turbine Applications

1997 ◽  
Vol 119 (3) ◽  
pp. 531-538 ◽  
Author(s):  
E. M. Curtis ◽  
H. P. Hodson ◽  
M. R. Banieghbal ◽  
J. D. Denton ◽  
R. J. Howell ◽  
...  

This paper describes a program of work, largely experimental, which was undertaken with the objective of developing an improved blade profile for the low-pressure turbine in aero-engine applications. Preliminary experiments were conducted using a novel technique. An existing cascade of datum blades was modified to enable the pressure distribution on the suction surface of one of the blades to be altered. Various means, such as shaped inserts, an adjustable flap at the trailing edge, and changing stagger were employed to change the geometry of the passage. These experiments provided boundary layer and lift data for a wide range of suction surface pressure distributions. The data were then used as a guide for the development of new blade profiles. The new blade profiles were then investigated in a low-speed cascade that included a set of moving bars upstream of the cascade of blades to simulate the effect of the incoming wakes from the previous blade row in a multistage turbine environment. Results are presented for two improved profiles that are compared with a datum representative of current practice. The experimental results include loss measurements by wake traverse, surface pressure distributions, and boundary layer measurements. The cascades were operated over a Reynolds number range from 0.7 × 105 to 4.0 × 105. The first profile is a “laminar flow” design that was intended to improve the efficiency at the same loading as the datum. The other is a more highly loaded blade profile intended to permit a reduction in blade numbers. The more highly loaded profile is the most promising candidate for inclusion in future designs. It enables blade numbers to be reduced by 20 percent, without incurring any efficiency penalty. The results also indicate that unsteady effects must be taken into consideration when selecting a blade profile for the low-pressure turbine.

Author(s):  
E. M. Curtis ◽  
H. P. Hodson ◽  
M. R. Banieghbal ◽  
J. D. Denton ◽  
R. J. Howell ◽  
...  

This paper describes a programme of work, largely experimental, which was undertaken with the objective of developing an improved blade profile for the low-pressure turbine in aero-engine applications. Preliminary experiments were conducted using a novel technique. An existing cascade of datum blades was modified to enable the pressure distribution on the suction surface of one of the blades to be altered. Various means, such as shaped inserts, an adjustable flap at the trailing edge, and changing stagger were employed to change the geometry of the passage. These experiments provided boundary layer and lift data for a wide range of suction surface pressure distributions. The data was then used as a guide for the development of new blade profiles. The new blade profiles were then investigated in a low-speed cascade that included a set of moving bars upstream of the cascade of blades 10 simulate the effect of the incoming wakes from the previous blade row in a multistage turbine environment. Results are presented for two improved profiles that are compared with a datum representative of current practice. The experimental results include loss measurements by wake traverse, surface pressure distributions, and boundary layer measurements. The cascades were operated over a Reynolds Number range from 0.7 × 105 to 4.0 × 105. The first profile is a “laminar flow” design that was intended to improve the efficiency at the same loading as the datum. The other is a more highly loaded blade profile intended to permit a reduction in blade numbers. The more highly loaded profile is the most promising candidate for inclusion in future designs. It enables blade numbers to be reduced by 20%, without incurring any efficiency penalty. The results also indicate that unsteady effects must be taken into consideration when selecting a blade profile for the low-pressure turbine.


Author(s):  
Stephen A. Pym ◽  
Asad Asghar ◽  
William D. E. Allan ◽  
John P. Clark

Abstract Aircraft are operating at increasingly high-altitudes, where decreased air density and engine power settings have led to increasingly low Reynolds numbers in the low-pressure turbine portion of modern-day aeroengines. These operating conditions, in parallel with highly-loaded blade profiles, result in non-reattaching laminar boundary layer separation along the blade suction surface, increasing loss and decreasing engine performance. This work presents an experimental investigation into the potential for integrated leading-edge tubercles to improve blade performance in this operating regime. A turn-table cascade test-section was constructed and commissioned to test a purpose-designed, forward-loaded, low-pressure turbine blade profile at various incidences and Reynolds numbers. Baseline and tubercled blades were tested at axial chord Reynolds numbers at and between 15 000 and 60 000, and angles of incidence ranging from −5° to +10°. Experimental data collection included blade surface pressure measurements, total pressure loss in the blade wakes, hot-wire anemometry, surface hot-film measurements, and surface flow visualization using tufts. Test results showed that the implementation of tubercles did not lead to a performance enhancement. However, useful conclusions were drawn regarding the ability of tubercles to generate stream-wise vortices at ultra-low Reynolds numbers. Additional observations helped to characterize the suction surface boundary layer over the highly-loaded, low-pressure turbine blade profile when at off-design conditions. Recommendations were made for future work.


Author(s):  
Marion Mack ◽  
Roland Brachmanski ◽  
Reinhard Niehuis

The performance of the low pressure turbine (LPT) can vary appreciably, because this component operates under a wide range of Reynolds numbers. At higher Reynolds numbers, mid and aft loaded profiles have the advantage that transition of suction side boundary layer happens further downstream than at front loaded profiles, resulting in lower profile loss. At lower Reynolds numbers, aft loading of the blade can mean that if a suction side separation exists, it may remain open up to the trailing edge. This is especially the case when blade lift is increased via increased pitch to chord ratio. There is a trend in research towards exploring the effect of coupling boundary layer control with highly loaded turbine blades, in order to maximize performance over the full relevant Reynolds number range. In an earlier work, pulsed blowing with fluidic oscillators was shown to be effective in reducing the extent of the separated flow region and to significantly decrease the profile losses caused by separation over a wide range of Reynolds numbers. These experiments were carried out in the High-Speed Cascade Wind Tunnel of the German Federal Armed Forces University Munich, Germany, which allows to capture the effects of pulsed blowing at engine relevant conditions. The assumed control mechanism was the triggering of boundary layer transition by excitation of the Tollmien-Schlichting waves. The current work aims to gain further insight into the effects of pulsed blowing. It investigates the effect of a highly efficient configuration of pulsed blowing at a frequency of 9.5 kHz on the boundary layer at a Reynolds number of 70000 and exit Mach number of 0.6. The boundary layer profiles were measured at five positions between peak Mach number and the trailing edge with hot wire anemometry and pneumatic probes. Experiments were conducted with and without actuation under steady as well as periodically unsteady inflow conditions. The results show the development of the boundary layer and its interaction with incoming wakes. It is shown that pulsed blowing accelerates transition over the separation bubble and drastically reduces the boundary layer thickness.


Author(s):  
Ralph J. Volino

Oscillating vortex generator jets have been used to control boundary layer separation from the suction side of a low-pressure turbine airfoil. A low Reynolds number (Re = 25,000) case with low free-stream turbulence has been investigated with detailed measurements including profiles of mean and fluctuating velocity and turbulent shear stress. Ensemble averaged profiles are computed for times within the jet pulsing cycle, and integral parameters and local skin friction coefficients are computed from these profiles. The jets are injected into the mainflow at a compound angle through a spanwise row of holes in the suction surface. Preliminary tests showed that the jets were effective over a wide range of frequencies and amplitudes. Detailed tests were conducted with a maximum blowing ratio of 4.7 and a dimensionless oscillation frequency of 0.65. The outward pulse from the jets in each oscillation cycle causes a disturbance to move down the airfoil surface. The leading and trailing edge celerities for the disturbance match those expected for a turbulent spot. The disturbance is followed by a calmed region. Following the calmed region, the boundary layer does separate, but the separation bubble remains very thin. Results are compared to an uncontrolled baseline case in which the boundary layer separated and did not reattach, and a case controlled passively with a rectangular bar on the suction surface. The comparison indicates that losses will be substantially lower with the jets than in the baseline or passively controlled cases.


Author(s):  
Stuart I. Benton ◽  
Chiara Bernardini ◽  
Jeffrey P. Bons ◽  
Rolf Sondergaard

Efforts to reduce blade count and avoid boundary layer separation have led to low-pressure turbine airfoils with significant increases in loading as well as front-loaded pressure distributions. These features have been independently shown to increase losses within the secondary flow field at the endwall. Compound angle blowing from discrete jets on the blade suction surface near the endwall has been shown to be effective in reducing these increased losses and enabling the efficient use of highly loaded blade designs. In this study, experiments are performed on the front loaded L2F low-pressure turbine airfoil in a linear cascade. The required mass flow is reduced by decreasing hole count from previous configurations and from the introduction of unsteady blowing. The effects of pulsing frequency and duty cycle are investigated using phase-locked stereo particle image velocimetry to demonstrate the large scale movement and hysteresis behavior of the passage vortex interacting with the pulsed jets. Total pressure loss contours at the cascade outlet demonstrate that the efficiency benefit is maintained with the use of unsteady forcing.


2013 ◽  
Vol 135 (5) ◽  
Author(s):  
Marion Mack ◽  
Reinhard Niehuis ◽  
Andreas Fiala ◽  
Yavuz Guendogdu

The current work investigates the performance benefits of pulsed blowing with frequencies up to 10 kHz on a highly loaded low pressure turbine (LPT) blade. The influence of blowing position and frequency on the boundary layer and losses are investigated. Pressure profile distribution measurements and midspan wake traverses are used to assess the effects on the boundary layer under a wide range of Reynolds numbers from 50,000 to 200,000 at a cascade exit Mach number of 0.6 under steady as well as periodically unsteady inflow conditions. High-frequency blowing at sufficient amplitudes is achieved with the use of fluidic oscillators. The integral loss coefficient calculated from wake traverses is used to assess the optimum pressure ratio driving the fluidic oscillators. The results show that pulsed blowing with fluidic oscillators can significantly reduce the profile losses of the highly loaded LPT blade T161 with a moderate amount of air used in a wide range of Reynolds numbers under both steady and unsteady inflow conditions.


Author(s):  
Sun Shuang ◽  
Lei Zhi-jun ◽  
Lu Xin-gen ◽  
Zhang Yan-feng ◽  
Zhu Jun-qiang

Boundary layer separation can lead to partial loss of lift and higher aerodynamic losses on low-pressure turbine airfoils at low Reynolds number in high bypass ratio engines. The combined effects of upstream wakes and surface roughness on boundary layer development have been investigated experimentally to improve the performance of ultra-high-lift low-pressure turbine (LPT) blades. The measurement was performed on a linear cascade with an ultra-high-lift aft-loaded LP turbine profile named IET-LPTA with Zweifel loading coefficient of about 1.37. The wakes were simulated by the moving cylindrical bars upstream of the cascade. The time-mean aerodynamic performance and the boundary layer behavior on suction surface had been measured with two 3-hole probes and a hot-wire probe. Three roughness heights ranging from 8.8–20.9μm combined with three roughness deposit positions ranging from 5.2%–39.5% suction surface length formed a large measurement matrix. The roughness with height of 8.8μm (1.05×10−4 chord length) covering 5.2% suction surface reduced the profile loss across the whole Reynolds number range. Under the effect of roughness associated with upstream wakes, the freestream turbulence intensity (FSTI) is responsible in part for the development of the wake-induced transition region, calmed region and natural transition region of the boundary layer. The transition length and the transition onset of the boundary layer were also affected by the FSTI.


2014 ◽  
Vol 136 (7) ◽  
Author(s):  
Stuart I. Benton ◽  
Chiara Bernardini ◽  
Jeffrey P. Bons ◽  
Rolf Sondergaard

Efforts to reduce blade count and avoid boundary layer separation have led to low-pressure turbine airfoils with significant increases in loading as well as front-loaded pressure distributions. These features have been independently shown to increase losses within the secondary flow field at the end wall. Compound angle blowing from discrete jets on the blade suction surface near the end wall has been shown to be effective in reducing these increased losses and enabling the efficient use of highly loaded blade designs. In this study, experiments are performed on the front loaded L2F low-pressure turbine airfoil in a linear cascade. The required mass flow is reduced by decreasing the hole count from previous configurations and from the introduction of unsteady blowing. The effects of pulsing frequency and duty cycle are investigated using phase-locked stereo particle image velocimetry to demonstrate the large scale movement and hysteresis behavior of the passage vortex interacting with the pulsed jets. Total pressure loss contours at the cascade outlet demonstrate that the efficiency benefit is maintained with the use of unsteady forcing.


2003 ◽  
Vol 125 (4) ◽  
pp. 765-777 ◽  
Author(s):  
Ralph J. Volino

Oscillating vortex generator jets have been used to control boundary layer separation from the suction side of a low-pressure turbine airfoil. A low Reynolds number (Re=25,000) case with low free-stream turbulence has been investigated with detailed measurements including profiles of mean and fluctuating velocity and turbulent shear stress. Ensemble averaged profiles are computed for times within the jet pulsing cycle, and integral parameters and local skin friction coefficients are computed from these profiles. The jets are injected into the mainflow at a compound angle through a spanwise row of holes in the suction surface. Preliminary tests showed that the jets were effective over a wide range of frequencies and amplitudes. Detailed tests were conducted with a maximum blowing ratio of 4.7 and a dimensionless oscillation frequency of 0.65. The outward pulse from the jets in each oscillation cycle causes a disturbance to move down the airfoil surface. The leading and trailing edge celerities for the disturbance match those expected for a turbulent spot. The disturbance is followed by a calmed region. Following the calmed region, the boundary layer does separate, but the separation bubble remains very thin. Results are compared to an uncontrolled baseline case in which the boundary layer separated and did not reattach, and a case controlled passively with a rectangular bar on the suction surface. The comparison indicates that losses will be substantially lower with the jets than in the baseline or passively controlled cases.


Sign in / Sign up

Export Citation Format

Share Document