Effects of Surface Roughness on Heat Transfer and Aerodynamic Performance of Turbine Airfoils

1998 ◽  
Vol 120 (3) ◽  
pp. 522-529 ◽  
Author(s):  
N. Abuaf ◽  
R. S. Bunker ◽  
C. P. Lee

Aerodynamic flow path losses and turbine airfoil gas side heat transfer are strongly affected by the gas side surface finish. For high aero efficiencies and reduced cooling requirements, airfoil designs dictate extensive surface finishing processes to produce smooth surfaces and enhance engine performance. The achievement of these requirements incurs additional manufacturing finishing costs over less strict requirements. The present work quantifies the heat transfer (and aero) performance differences of three cast airfoils with varying degrees of surface finish treatment. An airfoil, that was grit blast and Codep coated, produced an average roughness of 2.33 μm, one that was grit blast, tumbled, and aluminide coated produced 1.03 μm roughness, and another that received further postcoating polishing produced 0.81 μm roughness. Local heat transfer coefficients were experimentally measured with a transient technique in a linear cascade with a wide range of flow Reynolds numbers covering typical engine conditions. The measured heat transfer coefficients were used with a rough surface Reynolds analogy to determine the local skin friction coefficients, from which the drag forces and aero efficiencies were calculated. Results show that tumbling and polishing reduce the average roughness and improve performance. The largest differences are observed from the tumbling process, with smaller improvements realized from polishing.

Author(s):  
N. Abuaf ◽  
R. S. Bunker ◽  
C. P. Lee

Aerodynamic flow path losses and turbine airfoil gas side heat transfer are strongly affected by the gas side surface finish. For high aero efficiencies and reduced cooling requirements, airfoil designs dictate extensive surface finishing processes to produce smooth surfaces and enhance engine performance. The achievement of these requirements incurs additional manufacturing finishing costs over less strict requirements. The present work quantifies the heat transfer (and aero) performance differences of three cast airfoils with varying degrees of surface finish treatment. An airfoil which was grit blast and Codep coated produced an average roughness of 2.33 μm, one which was grit blast, tumbled, and Aluminide coated produced 1.03 μm roughness, and another which received further post coating polishing produced 0.81 μm roughness. Local heat transfer coefficients were experimentally measured with a transient technique in a linear cascade with a wide range of flow Reynolds numbers covering typical engine conditions. The measured heat transfer coefficients were used with a rough surface Reynolds Analogy to determine the local skin friction coefficients, from which the drag forces and aero efficiencies were calculated. Results show that tumbling and polishing reduce the average roughness and improve performance. The largest differences are observed from the rumbling process, with smaller improvements realized from polishing.


Author(s):  
Anil K. Tolpadi ◽  
Michael E. Crawford

The heat transfer and aerodynamic performance of turbine airfoils are greatly influenced by the gas side surface finish. In order to operate at higher efficiencies and to have reduced cooling requirements, airfoil designs require better surface finishing processes to create smoother surfaces. In this paper, three different cast airfoils were analyzed: the first airfoil was grit blasted and codep coated, the second airfoil was tumbled and aluminide coated, and the third airfoil was polished further. Each of these airfoils had different levels of roughness. The TEXSTAN boundary layer code was used to make predictions of the heat transfer along both the pressure and suction sides of all three airfoils. These predictions have been compared to corresponding heat transfer data reported earlier by Abuaf et al. (1997). The data were obtained over a wide range of Reynolds numbers simulating typical aircraft engine conditions. A three-parameter full-cone based roughness model was implemented in TEXSTAN and used for the predictions. The three parameters were the centerline average roughness, the cone height and the cone-to-cone pitch. The heat transfer coefficient predictions indicated good agreement with the data over most Reynolds numbers and for all airfoils-both pressure and suction sides. The transition location on the pressure side was well predicted for all airfoils; on the suction side, transition was well predicted at the higher Reynolds numbers but was computed to be somewhat early at the lower Reynolds numbers. Also, at lower Reynolds numbers, the heat transfer coefficients were not in very good agreement with the data on the suction side.


1999 ◽  
Vol 123 (4) ◽  
pp. 749-757 ◽  
Author(s):  
S. Baldauf ◽  
A. Schulz ◽  
S. Wittig

Local heat transfer coefficients on a flat plate surface downstream a row of cylindrical ejection holes were investigated. The parameters blowing angle, hole pitch, blowing rate, and density ratio were varied over a wide range, emphasizing engine relevant conditions. A high-resolution IR-thermography technique was used for measuring surface temperature fields. Local heat transfer coefficients were obtained from a Finite Element analysis. IR-determined surface temperatures and backside temperatures of the cooled test plate measured with thermocouples were applied as boundary conditions in this heat flux computation. The superposition approach was employed to obtain the heat transfer coefficient hf based on the difference between actual wall temperatures and adiabatic wall temperatures in the presence of film cooling. The hf data are given for an engine relevant density ratio of 1.8. Therefore, heat transfer results with different wall temperature conditions and adiabatic film cooling effectiveness results for identical flow situations (i.e., constant density ratios) were combined. Characteristic surface patterns of the locally resolved heat transfer coefficients hf are recognized and quantified as the different ejection parameters are changed. The detailed results are used to discuss the specific local heat transfer behavior in the presence of film cooling. They also provide a base of surface data essential for the validation of the heat transfer capabilities of CFD codes in discrete hole film cooling.


2008 ◽  
Vol 130 (6) ◽  
Author(s):  
A. Rabah ◽  
S. Kabelac

Local heat transfer coefficients for flow boiling of pure 1,1,1,2-tetrafluoroethane (R134a) and binary mixtures of propane (R290) and R134a were measured. The experimental setup employed a vapor heated plain horizontal tube (di=10mm, do=12mm, L=500mm). The measurements covered a wide range of saturation temperatures (233≤Ts≤278K), mass fluxes (100≤ṁ≤300kg∕m2s), qualities (0≤ẋ≤1), and concentrations (0≤z̃≤0.65). In the zeotropic region of R134a/R290 mixtures, the measured local heat transfer coefficient was found to show a maximum decrease by a factor of 2 relative to that for pure R134a. At the azeotropic point (65% R290), it was found to increase by a factor of 1.2. The measured local heat transfer coefficients for both R134a and R134a/R290 were compared with a number of correlations.


2000 ◽  
Vol 124 (1) ◽  
pp. 133-139 ◽  
Author(s):  
K. Willenborg ◽  
V. Schramm ◽  
S. Kim ◽  
S. Wittig

The influence of a honeycomb facing on the heat transfer of a stepped labyrinth seal with geometry typical for modern jet engines was investigated. Heat transfer measurements were obtained for both a smooth stator and a stator lined with a honeycomb structure. In addition, an LDV system was used with the scaled up geometry to obtain a high local resolution of the velocity distribution in the seal. The experiments covered a wide range of pressure ratios and gap widths, typical for engine operating conditions. Local heat transfer coefficients were calculated from the measured wall and gas temperatures using a finite element code. By averaging the local values, mean heat transfer coefficients were determined and correlations for the global Nusselt numbers were derived for the stator and the rotor. The LDV results showed strong geometrical effects of the honeycomb structure on the development of the flow fields for the honeycomb seal. The distribution of the local heat transfer coefficients are compatible with the flow features identified by the LDV results and reveal a significantly reduced heat transfer with the honeycomb facing compared to the smooth facing.


1985 ◽  
Vol 107 (4) ◽  
pp. 1007-1015 ◽  
Author(s):  
T. Wang ◽  
T. W. Simon ◽  
J. Buddhavarapu

Experimental results are presented to document hydrodynamic and thermal development of flat-plate boundary layers undergoing natural transition. Local heat transfer coefficients, skin friction coefficients, and profiles of velocity, temperature, and Reynolds normal and shear stresses are presented. A case with no transition and transitional cases with 0.68 percent and 2.0 percent free-stream disturbance intensities were investigated. The locations of transition are consistent with earlier data. A late-laminar state with significant levels of turbulence is documented. In late-transitional and early-turbulent flows, turbulent Prandtl number and conduction layer thickness values exceed, and the Reynolds analogy factor is less than, values previously measured in fully turbulent flows.


Author(s):  
S. Baldauf ◽  
A. Schulz ◽  
S. Wittig

Local heat transfer coefficients on a flat plate surface downstream a row of cylindrical ejection holes were investigated. The parameters blowing angle, hole pitch, blowing rate, and density ratio were varied in a wide range emphasizing on engine relevant conditions. A high resolution IR-thermography technique was used for measuring surface temperature fields. Local heat transfer coefficients were obtained by a Finite Element analysis. IR-determined surface temperatures and backside temperatures of the cooled testplate measured with thermocouples were applied as boundary conditions in a heat flux computation. The superposition approach was employed to obtain the heat transfer coefficient hr referring to adiabatic wall temperatures in the presence of film cooling. Therefore, heat transfer results with different wall temperature conditions and adiabatic film cooling effectiveness results of identical flow situations (constant density ratios) were combined. Characteristic surface patterns of the locally resolved heat transfer coefficients hf depending on the various parameters were recognized and quantified. The detailed results are used to discuss the specific local heat transfer behavior in the presence of film cooling. They also provide a base of surface data essential for the validation of the heat transfer capabilities of CFD-codes in discrete hole film cooling.


Author(s):  
K. Willenborg ◽  
V. Schramm ◽  
S. Kim ◽  
S. Wittig

The influence of a honeycomb facing on the heat transfer of a stepped labyrinth seal with geometry typical for modern jet engines was investigated. Heat transfer measurements were obtained for both a smooth stator and a stator lined with a honeycomb structure. In addition, an LDV system was used with the scaled up geometry to obtain a high local resolution of the velocity distribution in the seal. The experiments covered a wide range of pressure ratios and gap widths, typical for engine operating conditions. Local heat transfer coefficients were calculated from the measured wall and gas temperatures using a finite element code. By averaging the local values, mean heat transfer coefficients were determined and correlations for the global Nusselt numbers were derived for the stator and the rotor. The LDV results showed strong geometrical effects of the honeycomb structure on the development of the flow fields for the honeycomb seal. The distribution of the local heat transfer coefficients are compatible with to the flow features identified by the LDV results and reveal a significantly reduced heat transfer with the honeycomb facing compared to the smooth facing.


2016 ◽  
Vol 138 (5) ◽  
Author(s):  
Srinivas Garimella ◽  
Ulf C. Andresen ◽  
Biswajit Mitra ◽  
Yirong Jiang ◽  
Brian M. Fronk

Heat transfer during condensation of refrigerant blends R404A and R410A flowing through horizontal tubes with 0.76 ≤ D ≤ 9.4 mm at nominal Pr = 0.8–0.9 was investigated. Local heat transfer coefficients were measured for the mass flux range 200 < G < 800 kg m−2 s−1 in small quality increments over the entire vapor–liquid region. Heat transfer coefficients increased with quality and mass flux, while the effect of reduced pressure was not very significant within this range of pressures. The heat transfer coefficients increased with a decrease in diameter. Correlations from the literature were not able to predict the condensation heat transfer coefficient for these fluids at these near-critical pressures over the wide range of tube diameters under consideration. A new flow-regime based model for heat transfer in the wavy, annular, and annular/wavy transition regimes, which predicts 91% of the data within ±25%, is proposed.


Sign in / Sign up

Export Citation Format

Share Document