A Two-Region Model for Gradient Modification of Salt-Gradient Solar Ponds by Radial Injection

1996 ◽  
Vol 118 (1) ◽  
pp. 37-44 ◽  
Author(s):  
G. A. Eghneim ◽  
S. J. Kleis

A combined experimental and numerical study was conducted to support the development of a new gradient maintenance technique for salt-gradient solar ponds. Two numerical models were developed and verified by laboratory experiments. The first is an axisymmetric (near-field) model which determines mixing and entrainment in the near-field of the injecting diffuser by solving the conservation equations of mass, momentum, energy, and salt. The model assumes variable properties and uses a simple turbulence model based on the mixing length hypothesis to account for the turbulence effects. A series of experimental measurements were conducted in the laboratory for the initial adjustment of the turbulence model and verification of the code. The second model is a one-dimensional far-field model which determines the change of the salt distribution in the pond gradient zone as a result of injection by coupling the near-field injection conditions to the pond geometry. This is implemented by distributing the volume fluxes obtained at the domain boundary of the near-field model, to the gradient layers of the same densities. The numerical predictions obtained by the two-region model was found to be in reasonable agreement with the experimental data.

1980 ◽  
Vol 1 (17) ◽  
pp. 132 ◽  
Author(s):  
B. Latteux

For most of the needed studies for the design of Calais harbour enlargement works, the "Laooratoire National d'Hydraulique" chose to use numerical models. This approach includes the determination of currents around and insiae the new outer-haroour, just as the evaluation of the project sedimentologic impact and of the long-term evolution of a bank nameo "le Riaen de ia Rade", edging the access channel. Current studies were performed using four nested bidimensionnal computer models fitted on field data and supplying in eac;i point the depth-averaged velocity and the total water height. These four models are based on an implicite finite difference fractionnal step method. Besides for the very near field model the method is especially elaborated to enable' the detailed reproduction of eddies and flow separations. The sedimentological numerical study is based upon current models results : the bed-load transport is computed from the depth-averaged velocity and the water height previously determined using an empirical formula, and tne continuity equation applied to this loaa transport gives then the bed evolution. As soon as the depth variation is significant enough to react on the flow pattern, current fielos are readjusted oy a simple metnod based on flow continuity equation. This numerical model, applied to the near fielo, has given an evaluation of the sedimentological impact of the haroour enlargement project : - strong erosion in front of the new harbour due to current strengthening ; - accretion on each side of this erosion area, especially in the channel ; - bar formation at the harbour entrance.


Author(s):  
Liam Barr ◽  
Stephen W. T. Spence ◽  
Paul Eynon

This report details the numerical investigation of the performance characteristics and internal flow fields of an 86 mm radial turbine for a turbocharger application. A new blade was subsequently designed for the 86 mm rotor which departed from the conventional radial inlet blade angle to incorporate a 25° inlet blade angle. A comparative analysis between the two geometries is presented. Results show that the 25° back swept blade offers significant increases in efficiency while operating at lower than optimum velocity ratios (U/C). This enhanced efficiency at off-design conditions would significantly improve turbocharger performance where the turbine typically experiences lower than optimum velocity ratios while accelerating during engine transients. A commercial CFD code was used to construct single passage steady state numerical models. The numerical predictions show off-design performance gains of 2% can be achieved, while maintaining design point efficiency. Primary and secondary flow patterns are examined at various planes within the turbine blade passage and reasons for the increase in performance are discussed. A finite element analysis has been conducted to assess the stress implications of introducing a non-radial angle at turbine rotor inlet. A modal analysis was also carried out in order to identify the natural frequencies of the turbine geometry, thus calculating the critical speeds corresponding to the induction of the excitational frequencies from the stator vanes. Although the new blade design has resulted in stress increases in some regions, the numerical study has shown that it is feasible from both an aerodynamic and structural point of view to increase the performance characteristic of a radial turbine through the implementation of back swept blading.


1995 ◽  
Vol 32 (9-10) ◽  
pp. 169-178 ◽  
Author(s):  
A. Rodriguez ◽  
A. Sánchez-Arcilla ◽  
J. M. Redondo ◽  
E. Bahia ◽  
J. P. Sierra

Some results on pollutant dispersion modelling and tracer measurements for the Mediterranean Spanish coast are presented. Two hydrodynamic models have been used to simulate wind and wave induced circulation in the nearshore and surf zones respectively. A “near field” model has been used in order to simulate the initial conditions for the local “far field” dispersion model. Two study cases are presented: The first one shows the mixing of conservative tracers in a Mediterranean surf zone from an experimental and numerical models used to predict bacterial dispersion from the main sea outfalls of Barcelona City. The comparison between dye dispersion experiments and model in the surf zone is good, while the outfall predictions show the importance of accurately modelling the effects of buoyancy on the plume.


Author(s):  
M. E. Taslim ◽  
A. Nongsaeng

Trailing edge cooling cavities in modern gas turbine airfoils play an important role in maintaining the trailing edge temperature at levels consistent with airfoil design life. In this study, local and average heat transfer coefficients were measured in a test section simulating the trailing edge cooling cavity of a turbine airfoil using the steady-state liquid crystal technique. The test rig was made up of two adjacent channels, each with a trapezoidal cross sectional area. The first channel, simulating the cooling cavity adjacent to the trailing-edge cavity, supplied the cooling air to the trailing-edge channel through a row of racetrack-shaped slots on the partition wall between the two channels. Eleven crossover jets, issued from these slots entered the trailing-edge channel and exited from a second row of race-track shaped slots on the opposite wall in staggered or inline arrangement. Two jet angles were examined. The baseline tests were for zero angle between the jet axis and the trailing-edge channel centerline. The jets were then tilted towards one wall (pressure or suction side) of the trailing-edge channel by five degrees. Results of the two set of tests for a range of local jet Reynolds number from 10,000 to 35,000 were compared. The numerical models contained the entire trailing-edge and supply channels with all slots to simulate exactly the tested geometries. They were meshed with all-hexa structured mesh of high near-wall concentration. A pressure-correction based, multi-block, multi-grid, unstructured/adaptive commercial software was used in this investigation. Standard high Reynolds number k–ε turbulence model in conjunction with the generalized wall function for most parts was used for turbulence closure. Boundary conditions identical to those of the experiments were applied and several turbulence model results were compared. The numerical analyses also provided the share of each cross-over and each exit hole from the total flow for different geometries. The major conclusions of this study were: a) except for the first and last cross-flow jets which had different flow structures, other jets produced the same heat transfer results on their target surfaces, b) jets tilted at an angle of 5 degrees produced higher heat transfer coefficients on the target surface. The tilted jets also produced the same level of heat transfer coefficients on the wall opposite the target wall and c) the numerical predictions of impingement heat transfer coefficients were in good agreement with the measured values for most cases thus CFD could be considered a viable tool in airfoil cooling circuit designs.


Author(s):  
Gang Yang ◽  
Michael Isaacson

A time-domain boundary element method is developed to simulate linear waves generated by a wave paddle or a horizontal-moving landslide of an arbitrary profile. In this approach, a time-integration procedure is used to apply the boundary conditions, and the wave field at each time step is solved by an integral equation method based on Green’s theorem. Numerical models in three dimensions are developed to simulate waves generated by landslides. The models were validated against theoretical and experimental results on comparative wavemaker problems. Numerical simulation results on landslide-generated waves demonstrate a number of features of interest. Design curves for engineering applications are also developed for quick estimate of magnitudes of landslide-generated waves in engineering applications.


2011 ◽  
Vol 133 (4) ◽  
Author(s):  
M. E. Taslim ◽  
A. Nongsaeng

Trailing edge cooling cavities in modern gas turbine airfoils play an important role in maintaining the trailing-edge temperature at levels consistent with airfoil design life. In this study, local and average heat transfer coefficients were measured in a test section, simulating the trailing-edge cooling cavity of a turbine airfoil using the steady-state liquid crystal technique. The test rig was made up of two adjacent channels, each with a trapezoidal cross-sectional area. The first channel, simulating the cooling cavity adjacent to the trailing-edge cavity, supplied the cooling air to the trailing-edge channel through a row of racetrack-shaped slots on the partition wall between the two channels. Eleven crossover jets issued from these slots entered the trailing-edge channel and exited from a second row of race-track shaped slots on the opposite wall in staggered or inline arrangement. Two jet angles were examined. The baseline tests were for zero angle between the jet axis and the trailing-edge channel centerline. The jets were then tilted toward one wall (pressure or suction side) of the trailing-edge channel by 5 deg. Results of the two set of tests for a range of local jet Reynolds number from 10,000 to 35,000 were compared. The numerical models contained the entire trailing-edge and supply channels with all slots to simulate exactly the tested geometries. They were meshed with all-hexa structured mesh of high near-wall concentration. A pressure-correction based, multiblock, multigrid, unstructured/adaptive commercial software was used in this investigation. Standard high Reynolds number k−ε turbulence model in conjunction with the generalized wall function for most parts was used for turbulence closure. Boundary conditions identical to those of the experiments were applied and several turbulence model results were compared. The numerical analyses also provided the share of each cross-over and each exit hole from the total flow for different geometries. The major conclusions of this study were (a) except for the first and last cross-flow jets which had different flow structures, other jets produced the same heat transfer results on their target surfaces, (b) jets tilted at an angle of 5 deg produced higher heat transfer coefficients on the target surface. The tilted jets also produced the same level of heat transfer coefficients on the wall opposite the target wall, and (c) the numerical predictions of impingement heat transfer coefficients were in good agreement with the measured values for most cases; thus, computational fluid dynamics could be considered a viable tool in airfoil cooling circuit designs.


Author(s):  
Mohamed M Helal ◽  
Tamer M Ahmed ◽  
Adel A Banawan ◽  
Mohamed A Kotb

Determining and understanding the performance characteristics of marine propellers by experiments is quite a complex and costly task. Numerical predictions using computational fluid dynamics simulations could be a valuable alternative provided that the laminar-to-turbulent transition flow effects are fundamentally understood with the suitable numerical models developed. Experience suggests that the use of classical turbulent flow models may lead to high discrepancies especially at low rotational speeds where the effects of fluid flow transition from the laminar to the turbulent state may influence the predicted propeller’s performance. This article proposes a complete and detailed procedure for the computational fluid dynamics simulation of non-cavitating flow over marine propellers using the “ k–kl–ω” transition-sensitive turbulence model. Results are evaluated by “ANSYS FLUENT 16” for the “INSEAN E779A” propeller. Comparisons against the fully turbulent standard “ k–ε” model and against experiments show improved agreement in way of flow transition zones at lower rotational speeds, that is, at low Reynolds numbers.


2019 ◽  
Vol 9 (15) ◽  
pp. 3166
Author(s):  
Jinwon Shin ◽  
Jineung Lee ◽  
Yongjae Lee ◽  
Byungyun Kim

This paper presents an experimental and numerical study to investigate the structural performance of a steel deck-plate system bolted with truss girder. This system has been proposed herein to resolve the issues caused by welding. Structural tests for six full-scale specimens were performed to ensure the structural safety of the proposed system based on design criteria for deflection. Local responses with an emphasis on the failure modes of the system were also assessed using the measured strains at the locations where stresses are localized. Numerical models for all test specimens were developed with the material test data and were validated based on the test results. The structural behaviors of the proposed system, not confirmed in the tests, were further examined using numerical simulations, with a focus on the failure mechanism between the numerical predictions and the test results.


1998 ◽  
Vol 38 (10) ◽  
pp. 323-330
Author(s):  
Philip J. W. Roberts

The results of far field modeling of the wastefield formed by the Sand Island, Honolulu, ocean outfall are presented. A far field model, FRFIELD, was coupled to a near field model, NRFIELD. The input data for the models were long time series of oceanographic observations over the whole water column including currents measured by Acoustic Doppler Current Profilers and density stratification measured by thermistor strings. Thousands of simulations were made to predict the statistical variation of wastefield properties around the diffuser. It was shown that the visitation frequency of the wastefield decreases rapidly with distance from the diffuser. The spatial variation of minimum and harmonic average dilutions was also predicted. Average dilution increases rapidly with distance. It is concluded that any impact of the discharge will be confined to a relatively small area around the diffuser and beach impacts are not likely to be significant.


Sign in / Sign up

Export Citation Format

Share Document