Improved Performance of a Radial Turbine Through the Implementation of Back Swept Blading

Author(s):  
Liam Barr ◽  
Stephen W. T. Spence ◽  
Paul Eynon

This report details the numerical investigation of the performance characteristics and internal flow fields of an 86 mm radial turbine for a turbocharger application. A new blade was subsequently designed for the 86 mm rotor which departed from the conventional radial inlet blade angle to incorporate a 25° inlet blade angle. A comparative analysis between the two geometries is presented. Results show that the 25° back swept blade offers significant increases in efficiency while operating at lower than optimum velocity ratios (U/C). This enhanced efficiency at off-design conditions would significantly improve turbocharger performance where the turbine typically experiences lower than optimum velocity ratios while accelerating during engine transients. A commercial CFD code was used to construct single passage steady state numerical models. The numerical predictions show off-design performance gains of 2% can be achieved, while maintaining design point efficiency. Primary and secondary flow patterns are examined at various planes within the turbine blade passage and reasons for the increase in performance are discussed. A finite element analysis has been conducted to assess the stress implications of introducing a non-radial angle at turbine rotor inlet. A modal analysis was also carried out in order to identify the natural frequencies of the turbine geometry, thus calculating the critical speeds corresponding to the induction of the excitational frequencies from the stator vanes. Although the new blade design has resulted in stress increases in some regions, the numerical study has shown that it is feasible from both an aerodynamic and structural point of view to increase the performance characteristic of a radial turbine through the implementation of back swept blading.

Author(s):  
Liam Barr ◽  
Stephen Spence ◽  
David Thornhill ◽  
Paul Eynon

This report details the numerical and experimental investigation of the performance characteristics of a conventional radial turbine compared with a new back swept design for the same application. The blade geometry of an existing turbine from a turbocharger was used as a baseline. A new back swept blade was subsequently designed for the rotor, which departed from the conventional radial inlet blade angle to incorporate a 25° inlet blade angle. A comparative numerical analysis between the two geometries is presented. Results show that the 25° back swept blade offers significant increases in efficiency while operating at lower than optimum velocity ratios (U/C). Improvements in efficiency at off-design conditions could significantly improve turbocharger performance since the turbine typically experiences lower than optimum velocity ratios while accelerating during engine transients. A commercial CFD code was used to construct single passage steady state numerical models. The numerical predictions show off-design performance gains of 2% can be achieved, while maintaining design point efficiency. A finite element stress analysis was conducted to show that the nonradial inlet blade angle could be implemented without exceeding the acceptable stress levels for the rotor. A modal analysis was also carried out in order to identify the natural blade frequencies, showing that these were not significantly changed by the implementation of backswept blading. A prototype backswept rotor was produced and tested in a direct comparison with the baseline rotor geometry. Experimental performance results showed strong correlations with those obtained numerically, and verified the predicted performance gains at off-deign velocity ratios. This numerical and experimental study has shown that it is feasible from both an aerodynamic and structural point of view to improve the performance characteristic of a radial turbine at lower than optimum velocity ratios through the implementation of back swept blading.


1996 ◽  
Vol 118 (1) ◽  
pp. 37-44 ◽  
Author(s):  
G. A. Eghneim ◽  
S. J. Kleis

A combined experimental and numerical study was conducted to support the development of a new gradient maintenance technique for salt-gradient solar ponds. Two numerical models were developed and verified by laboratory experiments. The first is an axisymmetric (near-field) model which determines mixing and entrainment in the near-field of the injecting diffuser by solving the conservation equations of mass, momentum, energy, and salt. The model assumes variable properties and uses a simple turbulence model based on the mixing length hypothesis to account for the turbulence effects. A series of experimental measurements were conducted in the laboratory for the initial adjustment of the turbulence model and verification of the code. The second model is a one-dimensional far-field model which determines the change of the salt distribution in the pond gradient zone as a result of injection by coupling the near-field injection conditions to the pond geometry. This is implemented by distributing the volume fluxes obtained at the domain boundary of the near-field model, to the gradient layers of the same densities. The numerical predictions obtained by the two-region model was found to be in reasonable agreement with the experimental data.


2010 ◽  
Vol 132 (6) ◽  
Author(s):  
Dohyung Lim ◽  
Bumseok Namgung ◽  
Dae Gon Woo ◽  
Jin Seung Choi ◽  
Han Sung Kim ◽  
...  

Much research has been directed at improving the effectiveness of the radiofrequency (RF) ablation of hepatocellular carcinomas. In that point of view, this study was performed to provide comprehensive information of the relation between RF waveforms and thermodynamic response of the tissue with the consideration of four different types of RF waveforms (half-sine, half-square, half-exponential, and damped-sine) to maximize the amount of tumor tissue removed while maintaining the advantages of RF ablation. For the aim of this study, finite element models incorporating results from previous numerical models were used and validated with ex vivo experiments. From analyses of the entire results, we concluded that this study may prove valuable as a first step in providing comprehensive information of the relation between various RF waveforms and thermodynamic responses within the tissue during the RF ablation process. This study may also contribute toward studies to determine an optimum RF waveform capable of maximizing the amount of tumor tissue removed while maintaining the advantages of RF ablation.


2020 ◽  
Vol 27 (6) ◽  
pp. 767-793
Author(s):  
Stergios Goutianos ◽  
Norbert O. Cabrera ◽  
Ben Alcock ◽  
Neil Reynolds ◽  
Ton Peijs

AbstractThe creation of highly oriented, coextruded polypropylene (PP) tapes allows the production of recyclable self-reinforced polypropylene (SRPP) or all-PP composites, with a large temperature processing window and high volume reinforcement content ($$\sim$$ ∼ 90%). The objective of this research is to assess the performance potential of SRPP composites based on discontinuous or short tapes. For this, the critical tape length for effective mechanical reinforcement of aligned discontinuous PP tapes was determined, while the stress transfer from PP matrix to PP tape was investigated in single tape model composites in combination with an optical strain mapping technique. Mechanical behaviour of both single tape as well as aligned tape model composites was evaluated using finite element analysis (FEA) and used to predict the properties of randomly oriented short tape composites. These discontinuous tape SRPP composites may be of interest from a manufacturing as well as recycling point of view. In terms of manufacturing, such systems are of interest as they may show improved formability during stamping or compression moulding operations while from a recycling point of view it would allow the re-use of production waste like cuttings of fabrics or tapes.


Author(s):  
D. Palfreyman ◽  
R. F. Martinez-Botas

Presented is a numerical investigation of the characteristics of the internal flow field of a high-speed low-pressure ratio mixed flow turbine of 95.14 mm tip diameter. A commercial computational fluid dynamics (CFD) code has been successfully employed. This has been carefully validated to experimental data taken from a turbine test facility at this institution. A comparison to gated (in phase with the turbine rotation) Laser Doppler Velocimetry measurements at the turbine trailing edge and total to static efficiencies at various operating conditions, was made showing good agreement. Details of the internal flow field from a numerical study using a 393,872 cell density model are presented. These details have been compared to a radial turbine of similar geometry and performance characteristics, also analyzed using the same cell density and analysis and boundary conditions. The flow field was found to be highly three-dimensional with the tip leakage vortex as the dominant secondary flow feature. The tip clearance flow was found to be significantly influenced by the relative motion of the shroud wall, which suppressed the development of a vortex within the mainstream passage particularly in the inducer region. Comparison to the radial turbine has shown noticeable differences concentrated in the inducer region where the greater Coriolis acceleration in the radial turbine is more influential in the development of secondary flows. Considerable loss is observed localized at the blade leading edge tip region along the full length of the blade pitch; this is associated with the increased streamline curvature in the meridional plane.


1982 ◽  
Author(s):  
F. Fairbanks

Incidence losses occur when the gas flow angle does not coincide with the blade angle. Several incidence models which are available to the designer are reviewed and a new method of calculating the incidence losses in the stator and rotor of a mixed flow radial turbine is presented. The results from this model have been compared in the case of a mixed flow radial turbine rotor with the results from the other models and with the experimental results for the stator. All the models assume a change in the tangential component of kinetic energy at stator or rotor inlet. It is concluded that none of these models is satisfactory because they do not take into account the flow pattern in the rotor or stator passages.


2019 ◽  
Vol 9 (15) ◽  
pp. 3166
Author(s):  
Jinwon Shin ◽  
Jineung Lee ◽  
Yongjae Lee ◽  
Byungyun Kim

This paper presents an experimental and numerical study to investigate the structural performance of a steel deck-plate system bolted with truss girder. This system has been proposed herein to resolve the issues caused by welding. Structural tests for six full-scale specimens were performed to ensure the structural safety of the proposed system based on design criteria for deflection. Local responses with an emphasis on the failure modes of the system were also assessed using the measured strains at the locations where stresses are localized. Numerical models for all test specimens were developed with the material test data and were validated based on the test results. The structural behaviors of the proposed system, not confirmed in the tests, were further examined using numerical simulations, with a focus on the failure mechanism between the numerical predictions and the test results.


2022 ◽  
pp. 204141962110654
Author(s):  
Tan-Trung Bui ◽  
Dhafar Al Galib ◽  
Abdelkrim Bennani ◽  
Ali Limam

The collapse of tubes under axial load is an important subject from the safety point of view, particularly in the design of energy absorbing devices used in many engineering applications. In this study, quasi-static and dynamic experiments were carried out on square thin-walled aluminum extrusions to investigate the effects of circular holes. Cutouts were introduced in the four corners of the square-section tube, not far from the end boundary of the tube, in order both to decrease the first peak load on the load-displacement characteristic and to control the collapse mode. Different aspects, such as the buckling modes and the energy absorption in quasi-static axial crushing tests, as well as dynamic effects and material rheology contributions in dynamic crushing tests, have been examined. For the dynamic tests, the parameters were the impacting mass and its velocity. The results showed a drop in the first peak function of the openings’ radius and the tube’s energy absorption capacity was kept. A comparison between static and dynamic tests results was carried out and the interpretation of the results in terms of deformation mechanism and energy absorption was discussed. Numerical simulations with the finite element code ABAQUS were conducted to confirm the experimental findings. The results of different numerical models, implicit and explicit calculations, that contribute to a basic understanding of the buckling and prediction of the crash behavior of the aluminum components without and with the cutouts are presented.


Sign in / Sign up

Export Citation Format

Share Document