Residual Stress Estimation in Crossbores With Bauschinger Effect Inclusion Using FEM and Strain Energy Density

1999 ◽  
Vol 121 (4) ◽  
pp. 358-363 ◽  
Author(s):  
E. A. Badr ◽  
J. R. Sorem ◽  
S. M. Tipton

Crossbore intersections in liquid ends of positive displacement pumps (PDPs) have regions with high stress concentration. Due to the cyclic loading that occurs in most PDPs, these stress concentration points are susceptible to fatigue cracking. In order to prolong their life, the liquid ends are often overpressurized (autofrettaged), thus inducing beneficial compressive hoop stresses in these critical regions upon removal of the autofrettage pressure. This autofrettage process drives the region of high stress concentration beyond the elastic limit and well into the elastic-plastic region. Elastic-plastic stresses and strains due to loading and unloading were analyzed in crossbore geometries, with Bauschinger effect included, using 3-D finite element analysis of the liquid end. For comparison, an analytical approach was developed, based on the strain energy density criterion first proposed by Glinka. The approach was modified to include the Bauschinger effect for precise estimation of such stresses and strains. Good correlation was observed between elastic-plastic crossbore stresses and strains predicted by the analytical approach and the finite element analysis.

1991 ◽  
Vol 113 (3) ◽  
pp. 398-401 ◽  
Author(s):  
A. Chaaban ◽  
U. Muzzo

Due to the high stress concentration at the root of the first active thread in threaded end closures of high pressure vessels, yielding may occur in this region during the application of the first pressure cycle or proof testing. This overstraining introduces residual stresses that influence the fatigue performance of the vessel. This paper presents a parametric analysis of threaded end closures using elastic and elasto-plastic finite element solutions. The results are used to discuss the influence of these residuals on the estimated fatigue life when the vessel is subjected to repeated internal pressure. A simple empirical method to allow for the Bauschinger effect of the material is also proposed.


Author(s):  
Walter Dauksher ◽  
John Lau

Finite element analysis examines lead-free part-on-board accelerated thermal environments comprised of ramp and dwell times lasting between 5 and 15 minutes. The accumulated creep strain energy density is determined for each environment and used to evaluate cost-effective accelerated test environments.


1988 ◽  
Vol 110 (3) ◽  
pp. 195-204 ◽  
Author(s):  
G. Glinka ◽  
W. Ott ◽  
H. Nowack

For the evaluation of the local elastoplastic strains and stresses at the notch root suitable approximation formulas of sufficient accuracy are often used. In the present study the “equivalent strain energy density” concept for elastic-plastic notch strain-stress analysis has been developed. It was found that the evaluation of the strain energy density in the notch tip plastic zones does not require any input data other than the material stress-strain relation and the elastic stress concentration factor. The concept was verified on the basis of the results obtained from plane strain elastic-plastic finite element analysis using the material model after Mro´z. Comparison of the two sets of results revealed satisfactory accuracy of the equivalent strain energy concept. It was also shown that all stress and strain components in the notch tip can be calculated by complementing the method with Hencky’s equations. Neuber-based calculations were also included in the study. It was found that the energy concept was superior to Neuber’s rule, especially in the presence of high inelastic strains in the notch tip.


Author(s):  
Bing Li ◽  
Dave McNeish ◽  
Seyun Eom ◽  
D. K. Vijay ◽  
Si-tsai Lin ◽  
...  

In one CANDU reactor unit in Ontario, the west end fitting is designed to connect to the end shield via a stop collar. The outboard end of the stop collar is welded to an attachment ring which shrink-fits on the end fitting body. The east side end fitting is supported by inboard and outboard journal rings resting on their respective bearing sleeves which allow the ‘free’ axial movement of the channel. In support of some maintenance activities, the west end fitting is required to be jacked to get certain clearance for accommodating the operating tools. The previous elastic calculation got the jacking limit of 0.35″ while did not provide enough clearance for tooling. In this paper, an elastic-plastic finite element analysis following ASME B&PV code Section III, Division 1, Subsection NB is performed to increase the jacking limit. The finite element analysis is carried out using ANSYS and validated by an ABAQUS model. In the elastic-plastic finite element analysis, the following effects are considered: strain hardening of stop collar material, stress concentration in stop collar weld, notch effect on stress concentration and fatigue in stop collar. Cyclic jacking loads as displacement controlled loading are applied in the analysis. Considering the time to the end of unit life, the maximum anticipated end fitting jacking cycles are 8. The higher jacking limit is achieved with an acceptable plastic deformation and fatigue damage at the stop collar, which is the weakest part during the end fitting jacking. The results show that the end fitting can be jacked at west side End-face with 1.17″ for 1–3 cycles, 1.15″ for 4 cycles, 1.03″ for 5 cycles, 0.95″ for 6 cycles, 0.85″ for 7 cycles and 0.80″ for 8 cycles. The jacking limits achieved in this paper provide enough clearance for the required maintenance operations.


Author(s):  
Jing Zhang ◽  
Jianchun Fan ◽  
Laibin Zhang ◽  
Dong Wen ◽  
Yumei Wang

Corrosion-induced pits will disturb the original stress distribution of casing and appear local high stress area. Through 3-D finite element analysis on casing with spherical and cylindrical corrosion cavity, the stress concentration degree and the influences of cavity shape, size and orifice diameter on stress concentration factor are determined and analyzed. The results show that the depth and shape of corrosion cavities are major factors impacting the stress concentration factor. For the casing with corrosion pits, the smaller orifice diameter, the more obvious influence of hemisphere effect on stress concentration factor. With the transition from shallow-spherical cavity to exact hemispherical cavity or from exact hemispherical cavity to deep-spherical cavity or from exact hemispherical cavity to cylindrical cavity, the changes of stress concentration factor show different characteristics.


Author(s):  
Yuqing Liu ◽  
Philip Diwakar ◽  
Dan Lin ◽  
Ismat Eljaouhari ◽  
Ajay Prakash

High acoustic energy has the potential to cause severe Acoustic Induced Vibration (AIV) that leads to fatigue failure at high stress concentration regions such as fittings in a piping system. Sweepolet fittings have been extensively used as mitigation to counteract the risk of fatigue failure caused by AIV. The advantages of a sweepolet are its integrally reinforced contoured body and low stress concentration. However, there are inconsistencies in published standards and regarding the design limits for sweepolet subjected to AIV. In this paper, Finite Element Analysis is conducted to simulate high frequency pipe shell wall vibration caused by acoustic energy inside the pipe. Peak stress and the associated minimum fatigue life are calculated for sweepolet and sockolet under the same acoustic excitation. By comparing the stress level to that of a sockolet whose design limit to AIV had been published, the design curve and fatigue life equation for sweepolet are developed.


Author(s):  
Ajay Prakash ◽  
Philip Diwakar ◽  
Dan Lin ◽  
Paul Deane ◽  
Yuqing Liu ◽  
...  

High acoustic energy has the potential to cause severe acoustic induced vibration (AIV) that can lead to fatigue failure at high stress concentration locations (discontinuities) in a piping system. AIV at pipe junctions (Lateral, Tee, and Wye) and welded support attachments (trunnions and shoes) is evaluated using Finite Element Analysis. At different size pipe junctions, branch and header pipe shells may be subjected to different sound pressure. Also, inertia associated with different wall thickness(s) can lead to very different dynamic response of the two shell walls. The effect of these differences on AIV response is analyzed. Resulting response for different junction reinforcement designs is evaluated and compared to an unreinforced ‘stub-on’ configuration to assess the designs.


Author(s):  
S Mathukumar ◽  
VA Nagarajan ◽  
A Radhakrishnan

Humans face bone fracture when they unfortunately met an accident, which requires timely medical attention for healing and repairing the fractured bone; otherwise that paralyzes their life. 3D modeling technique with computational method is very helpful at the side of doctors for healing and repairing the damaged bones. Fractional bone healing is one of the natural processes, which regain the mechanical reliability of the bone to a limited level of failures. The relationship between the biology and mechanics has introduced a new branch namely biomechanics. Various biomechanics models were used to identify the fracture for different patients and helps in the fracture treatment. The aim of this work is to find out the high stress concentration area of the femur bone, which has been extracted as image from computer tomography scanner. The retrieved noise-free femur bone image is tested by the static load condition with the help of the finite element analysis. The result obtained from the testing of different loads has been compared with the existing literature. It is found that the femur bone has tensile and compressive stress, and the neck area of the femur is at a very high stress concentration. The outcome of this work is much supportive to orthopedic surgeons in femur surgery and bone prosthesis by avoiding experiments on femur bone.


Sign in / Sign up

Export Citation Format

Share Document