Design of an Endoscopic Full-Thickness Lesion Removal Device

2008 ◽  
Vol 2 (1) ◽  
Author(s):  
S. McEuen ◽  
D. Tzeranis ◽  
B. Hemond ◽  
M. Dirckx ◽  
L. Lee ◽  
...  

Gastroenterologists would like to remove, through endoscopy, full-thickness lesions in the stomach, but currently there are no surgical devices capable of sealing the wound left after the lesion is removed. This paper describes the design, analysis, and prototyping of a device meant to address this problem. The device is intended to be used in conjunction with currently available endoscopes and comprises five key components including spikes, a beam, a hinge, a latch, and a positioning mechanism. Trials of positioning and placing a clamp on an in vitro pig stomach tissue were successfully completed.

Molecules ◽  
2021 ◽  
Vol 26 (9) ◽  
pp. 2554
Author(s):  
Marek Konop ◽  
Anna K. Laskowska ◽  
Mateusz Rybka ◽  
Ewa Kłodzińska ◽  
Dorota Sulejczak ◽  
...  

Impaired wound healing is a major medical challenge, especially in diabetics. Over the centuries, the main goal of tissue engineering and regenerative medicine has been to invent biomaterials that accelerate the wound healing process. In this context, keratin-derived biomaterial is a promising candidate due to its biocompatibility and biodegradability. In this study, we evaluated an insoluble fraction of keratin containing casomorphin as a wound dressing in a full-thickness surgical skin wound model in mice (n = 20) with iatrogenically induced diabetes. Casomorphin, an opioid peptide with analgesic properties, was incorporated into keratin and shown to be slowly released from the dressing. An in vitro study showed that keratin-casomorphin dressing is biocompatible, non-toxic, and supports cell growth. In vivo experiments demonstrated that keratin-casomorphin dressing significantly (p < 0.05) accelerates the whole process of skin wound healing to the its final stage. Wounds covered with keratin-casomorphin dressing underwent reepithelization faster, ending up with a thicker epidermis than control wounds, as confirmed by histopathological and immunohistochemical examinations. This investigated dressing stimulated macrophages infiltration, which favors tissue remodeling and regeneration, unlike in the control wounds in which neutrophils predominated. Additionally, in dressed wounds, the number of microhemorrhages was significantly decreased (p < 0.05) as compared with control wounds. The dressing was naturally incorporated into regenerating tissue during the wound healing process. Applied keratin dressing favored reconstruction of more regular skin structure and assured better cosmetic outcome in terms of scar formation and appearance. Our results have shown that insoluble keratin wound dressing containing casomorphin supports skin wound healing in diabetic mice.


2008 ◽  
Vol 52 (10) ◽  
pp. 3633-3636 ◽  
Author(s):  
T. J. Karpanen ◽  
T. Worthington ◽  
B. R. Conway ◽  
A. C. Hilton ◽  
T. S. J. Elliott ◽  
...  

ABSTRACT This study evaluated a model of skin permeation to determine the depth of delivery of chlorhexidine into full-thickness excised human skin following topical application of 2% (wt/vol) aqueous chlorhexidine digluconate. Skin permeation studies were performed on full-thickness human skin using Franz diffusion cells with exposure to chlorhexidine for 2 min, 30 min, and 24 h. The concentration of chlorhexidine extracted from skin sections was determined to a depth of 1,500 μm following serial sectioning of the skin using a microtome and analysis by high-performance liquid chromatography. Poor penetration of chlorhexidine into skin following 2-min and 30-min exposures to chlorhexidine was observed (0.157 ± 0.047 and 0.077 ± 0.015 μg/mg tissue within the top 100 μm), and levels of chlorhexidine were minimal at deeper skin depths (less than 0.002 μg/mg tissue below 300 μm). After 24 h of exposure, there was more chlorhexidine within the upper 100-μm sections (7.88 ± 1.37 μg/mg tissue); however, the levels remained low (less than 1 μg/mg tissue) at depths below 300 μm. There was no detectable penetration through the full-thickness skin. The model presented in this study can be used to assess the permeation of antiseptic agents through various layers of skin in vitro. Aqueous chlorhexidine demonstrated poor permeation into the deeper layers of the skin, which may restrict the efficacy of skin antisepsis with this agent. This study lays the foundation for further research in adopting alternative strategies for enhanced skin antisepsis in clinical practice.


2013 ◽  
Vol 7 (1-2) ◽  
pp. 4 ◽  
Author(s):  
Annie Imbeault ◽  
Geneviève Bernard ◽  
Alexandre Rousseau ◽  
Amélie Morissette ◽  
Stéphane Chabaud ◽  
...  

Introduction: Many efforts are used to improve surgical techniques and graft materials for urethral reconstruction. We developed an endothelialized tubular structure for urethral reconstruction.Methods: Two tubular models were created in vitro. Human fibroblasts were cultured for 4 weeks to form fibroblast sheets. Then, endothelial cells (ECs) were seeded on the fibroblast sheets and wrapped around a tubular support to form a cylinder for the endothelialized tubular urethral model (ET). No ECs were added in the standard tubular model (T). After 21 days of maturation, urothelial cells were seeded into the lumen of both models. Constructs were placed under perfusion in a bioreactor for 1 week. At several times,histology and immunohistochemistry were performed on grafted nude mice to evaluate the impact of ECs on vascularization.Results: Both models produced an extracellular matrix, without exogenous material, and developed a pseudostratified urothelium. Seven days after the graft, mouse red blood cells were present only in the outer layers in T model, but in the full thickness of ET model. After 14 days, erythrocytes were present in both models, but in a greater proportion in ET model. At day 28, both models were well-vascularized, with capillary-like structures in the wholethickness of the tubes.Conclusion: Incorporating endothelial cells was associated with an earlier vascularization of the grafts, which could decrease the necrosis of the transplanted tissue. As those models can be elaborated with the patient’s cells, this tubular urethral graft would be unique in its autologous property.


2018 ◽  
Vol 2018 ◽  
pp. 1-5 ◽  
Author(s):  
Mahmoud Ameri ◽  
Hayley Lewis ◽  
Paul Lehman

Franz cell studies, utilizing different human skin and an artificial membrane, evaluating the influence of skin model on permeation of zolmitriptan coated on an array of titanium microprojections, were evaluated. Full thickness and dermatomed ex vivo human skin, as well as a synthetic hydrophobic membrane (Strat-M®), were assessed. It was found that the choice of model demonstrated different absorption kinetics for the permeation of zolmitriptan. For the synthetic membrane only 11% of the zolmitriptan coated dose permeated into the receptor media, whilst for the dermatomed skin 85% permeated into the receptor. The permeation of zolmitriptan through full thickness skin had a significantly different absorption profile and time to maximum flux in comparison to the dermatomed skin and synthetic model. On the basis of these results dermatomed skin may be a better estimate of in vivo performance of drug-coated metallic microprojections.


Science ◽  
1981 ◽  
Vol 211 (4486) ◽  
pp. 1052-1054 ◽  
Author(s):  
E Bell ◽  
H. Ehrlich ◽  
D. Buttle ◽  
T Nakatsuji

Sign in / Sign up

Export Citation Format

Share Document