Auto and Cross-Bispectral Analysis of a System of Two Coupled Oscillators With Quadratic Nonlinearities Possessing Chaotic Motion

1992 ◽  
Vol 59 (3) ◽  
pp. 657-663 ◽  
Author(s):  
Charles Pezeshki ◽  
Steve Elgar ◽  
R. Krishna ◽  
T. D. Burton

Auto and cross-bispectral analyses of a two-degree-of-freedom system with quadratic nonlinearities having two-to-one internal (autoparametric) resonance are presented. Following the work of Nayfeh (1987), the method of multiple scales is used to obtain a first-order uniform expansion yielding four first-order nonlinear ordinary differential equations governing the modulation of the amplitudes and phases of the two modes. The particular case of parametric resonance of the first mode considered in this paper admits Hopf bifurcations and a pure period doubling route to chaos. Auto bicoherence spectra isolate the phase coupling between increasing numbers of triads of Fourier components for a pure period doubling route to chaos for the individual degrees-of freedom. Cross-bicoherence spectra, on the other hand, yield information about the phase coupling between the two degrees-of-freedom. The results presented here confirm the capacity of bispectral techniques to identify a quadratically nonlinear mechanical system that possesses chaotic motions. For the chaotic case, cross-bicoherence spectra indicate that most of the nonlinear energy transfer between the modes is owing to cross-coupling between phase modulations rather than between amplitude modulations.

Author(s):  
Bappaditya Banerjee ◽  
Anil K. Bajaj

Abstract Dynamical systems with two degrees-of-freedom, with quadratic nonlinearities and parametric excitations are studied in this analysis. The 1:2 superharmonic internal resonance case is analyzed. The method of harmonic balance is used to obtain a set of four first-order amplitude equations that govern the dynamics of the first-order approximation of the response. An analytical technique, based on Melnikov’s method is used to predict the parameter range for which chaotic dynamics exist in the undamped averaged system. Numerical studies show that chaotic responses are quite common in these quadratic systems and chaotic responses occur even in presence of damping.


Author(s):  
Feras K. Alfosail ◽  
Amal Z. Hajjaj ◽  
Mohammad I. Younis

We investigate theoretically and experimentally the two-to-one internal resonance in micromachined arch beams, which are electrothermally tuned and electrostatically driven. By applying an electrothermal voltage across the arch, the ratio between its first two symmetric modes is tuned to two. We model the nonlinear response of the arch beam during the two-to-one internal resonance using the multiple scales perturbation method. The perturbation solution is expanded up to three orders considering the influence of the quadratic nonlinearities, cubic nonlinearities, and the two simultaneous excitations at higher AC voltages. The perturbation solutions are compared to those obtained from a multimode Galerkin procedure and to experimental data based on deliberately fabricated Silicon arch beam. Good agreement is found among the results. Results indicate that the system exhibits different types of bifurcations, such as saddle node and Hopf bifurcations, which can lead to quasi-periodic and potentially chaotic motions.


1996 ◽  
Vol 63 (3) ◽  
pp. 565-574 ◽  
Author(s):  
Char-Ming Chin ◽  
A. H. Nayfeh

The nonlinear response of an infinitely long cylindrical shell to a primary excitation of one of its two orthogonal flexural modes is investigated. The method of multiple scales is used to derive four ordinary differential equations describing the amplitudes and phases of the two orthogonal modes by (a) attacking a two-mode discretization of the governing partial differential equations and (b) directly attacking the partial differential equations. The two-mode discretization results in erroneous solutions because it does not account for the effects of the quadratic nonlinearities. The resulting two sets of modulation equations are used to study the equilibrium and dynamic solutions and their stability and hence show the different bifurcations. The response could be a single-mode solution or a two-mode solution. The equilibrium solutions of the two orthogonal third flexural modes undergo a Hopf bifurcation. A combination of a shooting technique and Floquet theory is used to calculate limit cycles and their stability. The numerical results indicate the existence of a sequence of period-doubling bifurcations that culminates in chaos, multiple attractors, explosive bifurcations, and crises.


2002 ◽  
Vol 12 (04) ◽  
pp. 859-867 ◽  
Author(s):  
V. SHEEJA ◽  
M. SABIR

We study the effect of linear dissipative forces on the chaotic behavior of coupled quartic oscillators with two degrees of freedom. The effect of quadratic Rayleigh dissipation functions, one with diagonal coefficients only and the other with nondiagonal coefficients as well are studied. It is found that the effect of Rayleigh Dissipation function with diagonal coefficients is to suppress chaos in the system and to lead the system to its equilibrium state. However, with a dissipation function with nondiagonal elements, other types of behaviors — including fixed point attractor, periodic attractors and even chaotic attractors — are possible even when there is no external driving. In such a system the route to chaos is through period-doubling bifurcations. This result contradicts the view that linear dissipation always causes decay of oscillations in oscillator models.


1991 ◽  
Vol 58 (2) ◽  
pp. 559-565 ◽  
Author(s):  
M. P. Paidoussis ◽  
G. X. Li ◽  
R. H. Rand

A refined analytical model is presented for the dynamics of a cantilevered pipe conveying fluid and constrained by motion limiting restraints. Calculations with the discretized form of this model with a progressively increasing number of degrees of freedom, N, show that convergence is achieved with N = 4 or 5, which agrees with previously performed fractal dimension calculations of experimental data. Theory shows that, beyond the Hopf bifurcation, as the flow is increased, a pitchfork bifurcation is followed by a cascade of period doubling bifurcations leading to chaos, which is in qualitative agreement with observation. The numerically computed theoretical critical flow velocities are in excellent quantitative agreement (5–10 percent) with experimental values for the thresholds of the Hopf and period doubling bifurcations and for the onset of chaos. An approximation for the critical flow velocity for the loss of stability of the post-Hopf limit cycle is also obtained by using center manifold concepts and normal form techniques for a simplified version of the analytical model; it is found that the values obtained in this manner are approximately within 10 percent of those computed numerically.


2007 ◽  
Vol 17 (05) ◽  
pp. 1637-1660 ◽  
Author(s):  
W. ZHANG ◽  
C. Z. SONG

In this paper, higher-dimensional periodic and chaotic oscillations for a parametrically excited viscoelastic moving belt with multiple internal resonances are investigated for the first time. The external damping and internal damping of the material for the viscoelastic moving belt are considered simultaneously. First, the nonlinear governing equation of planar motion for the viscoelastic moving belt with the external damping is given. Then, the transverse nonlinear oscillations of the viscoelastic moving belt are considered. The method of multiple scales and the Galerkin approach are applied directly to the governing partial differential equation of motion for the viscoelastic moving belt to obtain an eight-dimensional averaged equation for the case of 1:2:3:4 internal resonances for the first-, the second-, the third- and the fourth-order modes and primary parametric resonance of the first-order mode. Finally, numerical method is used to investigate higher-dimensional periodic and chaotic motions of the viscoelastic moving belt. The results of numerical simulation demonstrate that there exist the period, period 2, period 4, multiple period and chaotic motions of the viscoelastic moving belt. The multipulse chaotic motions of the viscoelastic moving belt are observed from numerical simulations.


Author(s):  
Wayne Kreider ◽  
Ali H. Nayfeh ◽  
Char-Ming Chin

Abstract The vibrations of buckled beams with two-to-one internal resonances (ω2 ≈ 2ω1) about a static buckled position are analyzed. General boundary conditions and harmonic excitations (frequency Ω) in both the transverse and axial directions are considered. The analysis assumes a unimodal static buckled deflection, considers quadratic nonlinearities only, and determines the amplitude and phase modulation equations via the method of multiple scales. The following specific cases are treated: Ω ≈ 2ω2, Ω ≈ ω1 + ω2, and Ω ≈ ω1. From the modulation equations for a primary resonance of the second mode (i.e., Ω ≈ ω2), one-mode and two-mode stable equilibrium solutions are found in addition to dynamic solutions caused by Hopf bifurcations. In the region of dynamic solutions, a variety of phenomena are documented, including period-doubling bifurcations, intermittency, chaos, and crises.


1995 ◽  
Vol 05 (03) ◽  
pp. 725-740 ◽  
Author(s):  
C. CHIN ◽  
A.H. NAYFEH

The response of a parametrically excited two-degree-of-freedom system with quadratic and cubic nonlinearities and a nonsemisimple one-to-one internal resonance is investigated. The method of multiple scales is used to derive four first-order differential equations governing the modulation of the amplitudes and phases of the two modes for the cases of fundamental and principal parametric resonances. Bifurcation analysis of the case of fundamental parametric resonance reveals that the quadratic nonlinearities qualitatively change the response of the system. They change the pitchfork bifurcation to a transcritical bifurcation. Cyclic-fold, Hopf bifurcations of the nontrivial constant solutions, and period-doubling sequences leading to chaos are induced by these quadratic terms. The effects of quadratic nonlinearities for the case of principal parametric resonance are discussed.


1995 ◽  
Vol 05 (04) ◽  
pp. 971-982 ◽  
Author(s):  
C. CHIN ◽  
A. H. NAYFEH ◽  
D. T. MOOK

The Galerkin procedure is used to discretize the nonlinear partial differential equation and boundary conditions governing the flutter of a simply supported panel in a supersonic stream. These equations have repeated natural frequencies at the onset of flutter. The method of multiple scales is used to derive five first-order nonlinear ordinary-differential equations governing the modulation of the amplitudes and phases of the excited modes. Then, the modulation equations are used to calculate the equilibrium solutions and their stability, and hence to identify the excitation parameters that suppress flutter and those that lead to complex motions. A combination of a shooting technique and Floquet theory is used to calculate limit cycles and their stability. The numerical results indicate the existence of a sequence of period-doubling bifurcations that culminates in chaos. The complex motions are characterized by using phase planes, power spectra, Lyapunov exponents, and dimensions.


Author(s):  
Tao Liu ◽  
Wei Zhang ◽  
Yufei Zhang ◽  
Qian Wang

This paper is focused on the chaotic dynamics of a composite laminated circular cylindrical shell with radially pre-stretched membranes at both ends and clamped along a generatrix. Based on the two-degree-of-freedom non-autonomous nonlinear equations of this system, the method of multiple scales is employed to obtain the four-dimensional nonlinear averaged equation. The resonant case considered here is the primary parametric resonance-1/2 subharmonic resonance and 1:1 internal resonance. Corresponding to several selected parameters, the periodic and chaotic motions of the composite laminated circular cylindrical shell clamped along a generatrix are demonstrated by the bifurcation diagrams, the maximum Lyapunov exponents, the phase portraits, the waveforms, the power spectrums and the Poincaré map. The temperature parameter excitation shows that the Pomeau-Manneville type intermittent chaos occur under the certain initial conditions. It is also found that there exist the twin phenomena between the Pomeau-Manneville type intermittent chaos and the period-doubling bifurcation.


Sign in / Sign up

Export Citation Format

Share Document