Vibration Control of Rotationally Periodic Structures Using Passive Piezoelectric Shunt Networks and Active Compensation

1999 ◽  
Vol 121 (3) ◽  
pp. 379-390 ◽  
Author(s):  
J. Tang ◽  
K. W. Wang

This paper proposes a multi-mode vibration suppression scheme for rotationally periodic structures. Identical active-passive hybrid piezoelectric networks are applied on each of the substructures, where active charge and current feedback is used together with passive piezoelectric shunts to optimize the network performance. By exploiting the rotational periodicity, a new algorithm is synthesized to analytically determine the control parameters. It is shown that this hybrid approach can suppress all the spatial harmonics, which cannot be achieved by purely passive piezoelectric shunts. It is also observed that such a configuration requires much less control effort (voltage and power) when compared to a purely active approach.

2019 ◽  
Vol 230 (12) ◽  
pp. 4341-4356 ◽  
Author(s):  
Qichen Wu ◽  
Gangting Huang ◽  
Chong Liu ◽  
Shilin Xie ◽  
Minglong Xu

Author(s):  
Joshua Vaughan ◽  
William Singhose

The residual vibration of flexible systems can be reduced by properly shaping the reference command. There has been substantial evidence presented that input shaping is better than notch filtering for shaping reference commands to suppress vibration in mechanical systems. Much of this evidence is empirical comparisons between traditional filters and robust input shapers. Recently, a proof showing that notch filters are always equal to or longer in duration than an input shaper with identical single-mode vibration suppression constraints was presented. This paper expands on that previous result by extending the proof to multi-mode systems. The important ramification of this proof is that multi-mode input shapers suppress vibration more quickly than multi-mode notch filters. Ease of design, computation, and implementation are also discussed. Simulations of an industrial bridge crane demonstrate the key differences between the two methods.


Author(s):  
W. H. Liao ◽  
K. W. Wang

Abstract This paper is concerned with the analysis of active and passive hybrid actions in structures with active constrained damping layers (ACL). A system model is derived via Hamilton’s Principle, based on the constitutive equations of the elastic, viscoelastic, and piezoelectric materials. The model converges to a fully-active piezotronic system as the thickness of the viscoelastic material (VEM) layer approaches zero. A mixed Galerkin-GHM method is employed to discretize and analyze the model in time domain. With an LQR optimal control formulation, the effects of the active constrained layer configuration on the system vibration suppression performance and control effort requirements are investigated. Analysis illustrate that the active piezoelectric action with proper feedback controls will always enhance the damping ability of the passive constrained layer. On the other hand, the viscoelastic layer will reduce the direct control authorities from the active source to the host structure. The significance of this effect depends very much on the viscoelastic layer thickness and material properties. Therefore, with some parameter combinations, the ACL configuration could require more control effort while achieving less vibration reductions compared to a fully-active system. Through analyzing the performance and control effort indices, the conditions where this active-passive hybrid approach can outperform both the passive and active systems are quantified. Based on this study, design guidelines can be set up to effectively integrate the host structure with the piezoelectric and viscoelastic materials, such that a true active-passive hybrid control system can be achieved.


2013 ◽  
Vol 446-447 ◽  
pp. 1160-1164
Author(s):  
Sahar Bakhtiari Mojaz ◽  
Hamed Kashani

Vibration properties of most assembled mechanical systems depend on frictional damping in joints. The nonlinear transfer behavior of the frictional interfaces often provides the dominant damping mechanism in structure and plays an important role in the vibratory response of it. For improving the performance of systems, many studies have been carried out to predict measure and enhance the energy dissipation of friction. This paper presents a new approach to vibration reduction of flexible spacecraft with enhancing the energy dissipation of frictional dampers. Spacecraft is modeled as a 3 degree of freedom mass-spring system which is controlled by a lead compensator and System responses to step function evaluated. Coulomb and Jenkins element has been used as vibration suppression mechanisms in joints and sensitivity of their performance to variations of spacecraft excitation amplitude and damper properties is analyzed. The relation between frictional force and displacement derived and used in optimization of control performance. Responses of system and control effort needed for the vibration control are compared for these two frictional joints. It is shown that attitude control effort reduces, significantly with coulomb dampers and response of system improves. On the other hand, due to stick-slip phenomena in Jenkins element, we couldn’t expect the same performance from Jenkins damper.


2007 ◽  
Vol 129 (5) ◽  
pp. 559-566 ◽  
Author(s):  
Hongbiao Yu ◽  
K. W. Wang

Extensive investigations have been conducted to study the vibration localization phenomenon and the excessive forced response that can be caused by mistuning in bladed disks. Most previous researches have focused on analyzing∕predicting localization or attacking the mistuning issue via mechanical tailoring. Few have focused on developing effective vibration control methods for such systems. This study extends the piezoelectric network concept, which has been utilized for mode delocalization in periodic structures, to the control of mistuned bladed disks under engine order excitation. A piezoelectric network is synthesized and optimized to effectively suppress vibration in bladed disks. One of the merits of such an approach is that the optimum design is independent of the number of spatial harmonics, or engine orders. Local circuits are first formulated by connecting inductors and resistors with piezoelectric patches on the individual blades. Although these local circuits can function as conventional damped absorber when properly tuned, they do not perform well for bladed disks under all engine order excitations. To address this issue, capacitors are introduced to couple the individual local circuitries. Through such networking, an absorber system that is independent of the engine order can be achieved. Monte Carlo simulation is performed to investigate the effectiveness of the network for a bladed disk with a range of mistuning level of its mechanical properties. The robustness issue of the network in terms of detuning of the electric circuit parameters is also studied. Finally, negative capacitance is introduced and its effect on the performance and robustness of the network is investigated.


Sign in / Sign up

Export Citation Format

Share Document